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Annotation. The manual includes a description of the simulated physical system and a summary
of the relevant theoretical material for students as a prerequisite for the virtual lab “Torsion Spring
Oscillator with Dry Friction.” The manual includes also a set of theoretical and experimental problems
to be solved by students on their own, as well as various assignments which the instructor can offer
students for possible individual mini-research projects.
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1 Summary of the Theory

1.1 General Concepts
This lab is aimed at investigation of free oscillations of a torsion spring pendulum damped by dry
(Coulomb) friction. An idealized mathematical model of dry friction described by the so-called z-
characteristic is assumed. In this model, the force of kinetic friction does not depend on speed and
equals the limiting force of static friction. The physical system modelled here allows us to understand
the origin of accidental errors in reading some measuring instruments.

1.2 The Physical System
The rotating component of the torsion spring oscillator is a balanced flywheel (a rigid rod with two
equal weights) whose center of mass lies on the axis of rotation. A spiral spring, one end fixed and the
other end attached to the flywheel, flexes when the flywheel is turned. The spring provides a restoring
torque whose magnitude is proportional to the angular displacement of the flywheel from the equilibrium
position. Figure 1 shows the image of the simulated system as it appears on the computer screen.

Figure 1: The image of the torsion spring oscillator as it appears on the computer screen.

The dynamical behavior of such a system under the influence of viscous friction (for which the torque
is proportional to the angular velocity) is discussed in the manual for the lab “Free oscillations of a linear
torsion pendulum.” The reader should be familiar with this material before proceeding with this lab.

When friction is viscous, free oscillations of a spring pendulum are described by a linear differential
equation. The amplitude of such oscillations decreases exponentially with time. That is, the consecu-
tive maximal deflections of the oscillator from its equilibrium position are in a diminishing geometric
progression because their ratio is constant.
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In principle such oscillations continue indefinitely, their amplitude asymptotically approaching zero.
However, it is convenient to characterize the duration of exponential damping by a decay time τ . This
conventional time of damping τ is the lapse of time during which the amplitude of free oscillations
decreases by a factor of e ≈ 2.72.

The exponential character of damping caused by viscous friction follows from the proportionality
of friction to velocity. Some other relationship between friction and velocity produces damping with
different characteristics.

The case of dry or Coulomb friction has important practical applications. In this case, as long as
the system is moving, the magnitude of dry friction is very nearly constant and its direction is opposite
that of the velocity. An idealized simplified characteristic of dry friction (called the z-characteristic) is
shown in figure 2. The graph shows dependence of the frictional torque on the velocity of rotation. Here
the magnitude of friction is constant, but its direction changes each time the direction of the velocity
changes. When the system is at rest, the torque of static dry friction takes on any value from −Nmax to
Nmax. The actual value depends on the friction needed to balance the other forces exerted on the system.
The magnitude of the torque of kinetic dry friction is assumed in this model to be equal to the limiting
torque Nmax of static friction.
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Figure 2: An idealized characteristic of dry friction (z-characteristic).

In real physical systems dry friction is characterized by a more complicated dependence on velocity.
The limiting force of static friction is usually greater than the force of kinetic friction. When the speed of
a system increases from zero, kinetic friction at first decreases, reaches a minimum at some speed, and
then gradually increases with a further increase in speed. These peculiarities are ignored in the idealized
z-characteristic of dry friction. Nevertheless, this idealization helps us to understand many essential
properties of oscillatory processes in real physical systems.

Because the magnitude of the torque of static friction can assume any value up to Nmax, there is a
range of values of displacement called the stagnation interval or dead zone in which static friction can
balance the restoring elastic force of the strained spring. At any point within this interval the system can
be at rest in a state of neutral equilibrium, in contrast to a single position of stable equilibrium provided
by the spring in the case of viscous friction. If the velocity becomes zero at some point of the dead zone,
the system remains at rest there. The boundaries of the dead zone are indicated by small arrows on the
dial in figure 1.
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The stagnation interval extends equally to either side of the point at which the spring is unstrained.
The stronger the dry friction in the system, the more extended the stagnation interval. The boundaries of
the interval are determined by the limiting torque Nmax of static friction.

An important feature of oscillations damped by dry friction is that motion ceases after a finite number
of cycles. As the system oscillates, the sign of its velocity changes periodically, and each subsequent
change occurs at a smaller displacement from the mid-point of the stagnation interval. Eventually the
turning point of the motion occurs within the stagnation interval, in which static friction can balance
the restoring force of the spring, and so the motion abruptly stops. The exact position in the stagnation
interval at which this event occurs, depends on the initial conditions, which may vary from one situation
to the next.

These characteristics are typical of various mechanical systems with dry friction. For example, dry
friction may be encountered in measuring instruments, such as a moving-coil galvanometer, in which
readings are taken with a needle. In the galvanometer, a light coil of wire is pivoted between the poles of
a magnet. When a current flows through the coil, it turns against a spiral return spring. If the coil axis is
fixed in unlubricated bearings and hence experiences dry friction, the needle of the coil may come to rest
and show to any point of the stagnation interval on either side of the dial point which gives the true value
of the measured quantity. So we can now understand one of the reasons that random errors inevitably
occur in the readings of moving-coil measuring instruments. The larger the dry friction, the larger the
errors of measurement.

1.3 The Differential Equation of the Oscillator
The rotating flywheel of the torsion oscillator is simultaneously subjected to the action of the restoring
torque −Dϕ produced by the spring, and of the torque Nfr of kinetic dry friction. The differential
equation describing the motion of the flywheel, whose moment of inertia is J , is thus

Jϕ̈ = −Dϕ + Nfr. (1)

According to the idealized z-characteristic of dry friction, the torque Nfr is directed oppositely to the
angular velocity ϕ̇, and is constant in magnitude while the flywheel is moving, but may have any value
in the interval from −Nmax up to Nmax while the flywheel is at rest:

Nfr(ϕ̇) =

{ −Nmax for ϕ̇ > 0,
Nmax for ϕ̇ < 0,

(2)

or Nfr = −Nmax sign(ϕ̇). Here Nmax is the limiting value of the static frictional torque. It is convenient
to express the value Nmax in terms of the maximal possible deflection angle ϕm of the flywheel at rest:

Nmax = Dϕm. (3)

The angle ϕm corresponds to the boundary of the stagnation interval.
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The differential equation, Eq. (1), in the general case of an oscillator with dry friction, is nonlinear
because the torque Nfr(ϕ̇) abruptly changes when the sign of ϕ̇ changes at the extreme points of oscilla-
tion, and because when the flywheel moves, the torque is usually not constant. But in the idealized case
of the z-characteristic we may consider the following two linear equations instead of Eq. (1):

Jϕ̈ = −D(ϕ + ϕm) for ϕ̇ > 0, (4)

Jϕ̈ = −D(ϕ− ϕm) for ϕ̇ < 0. (5)

Whenever the sign of the angular velocity ϕ̇ changes, the pertinent equation of motion also changes. The
nonlinear character of the problem reveals itself in alternate transitions from one of the linear equations,
Eqs. (4)–(5), to the other.

The solution to Eqs. (4)–(5) which corresponds to a set of given initial conditions can be found by
using the method of the stage-by-stage integration of each of the linear equations for the half-cycle during
which the direction of motion is unchanged. These solutions are then joined together at the instants of
transition from one equation to the other in such a way that the displacement at the end point of one half-
cycle becomes the initial displacement at the beginning of the next half-cycle. This array of solutions
continues until the end point of a half-cycle lies within the dead zone.

If in addition to dry friction the oscillator also experiences viscous friction, we must add to the
equations of motion, Eqs. (4)–(5), one more term proportional to the angular velocity ϕ̇:

ϕ̈ = −ω2
0(ϕ + ϕm)− 2γϕ̇ for ϕ̇ > 0, (6)

ϕ̈ = −ω2
0(ϕ− ϕm)− 2γϕ̇ for ϕ̇ < 0. (7)

Here ω2
0 = D/J is the squared natural frequency of the oscillator (the frequency of oscillations in the

absence of friction), and γ is the damping constant. It is convenient to characterize viscous friction by
the dimensionless quality factor, Q = ω0/2γ.

1.4 Damping Caused by Dry Friction
In order to discover the fundamental characteristics of oscillations which are damped under the action of
dry friction, we shall first assume that viscous friction is absent (γ = 0).

At the initial instant t = 0, let the flywheel be displaced to the right (clockwise) from the equilibrium
position so that ϕ(0) > 0. If this displacement exceeds the boundary of the stagnation interval, i.e., if
ϕ(0) > ϕm, the flywheel, being released without a push, begins moving to the left (ϕ̇ < 0), and its
motion is described by Eq. (5). The solution to Eq. (5) with the given initial conditions (ϕ(0) = ϕ0,
ϕ̇(0) = 0) is simple harmonic motion whose frequency is ω0. The midpoint of the motion is ϕm. This
point coincides with the right-hand boundary of the stagnation interval. The displacement ϕm of the
midpoint from zero is caused by the constant torque of kinetic friction. This torque is directed to the
right (clockwise) while the flywheel is moving to the left. The amplitude of this oscillation about the
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Figure 3: Damping of oscillations caused by dry friction

midpoint ϕm is ϕ0−ϕm. The first segment of the graph in figure 3 (the first half-cycle of the sine curve,
whose midpoint is at a height of ϕm above the abscissa axis) is a plot of this part of the motion.

Since the amplitude of the first half-cycle is ϕ0 − ϕm, the extreme left position of the flywheel at the
end of the half-cycle is ϕ(0)−2ϕm. When the flywheel reaches this position, its velocity is momentarily
zero, and it starts to move to the right. Since its angular velocity ϕ̇ is subsequently positive, we must
now consider Eq. (4). The values of ϕ and ϕ̇ at the end of the preceding half-cycle are taken as the
initial conditions for this half-cycle. Thus the subsequent motion is again a half-cycle of harmonic
oscillation with the same frequency ω0 as before but with the midpoint −ϕm displaced to the left, i.e.,
with the midpoint at the left-hand boundary of the stagnation interval. This displacement is caused by
the constant torque of kinetic friction, whose direction was reversed when the direction of motion was
reversed. The amplitude of the corresponding segment of the sine curve is ϕ0 − 3ϕm.

Continuing this analysis half-cycle by half-cycle, we see that the flywheel executes harmonic oscilla-
tions about the midpoints alternately located at ϕm and −ϕm. The frequency of each cycle is the natural
frequency ω0, and so the duration of each full cycle equals the period T0 = 2π/ω0 of free oscillations in
the absence of friction.

The joining together of these sinusoidal segments, whose midpoints alternate between the boundaries
of the stagnation interval, produces the curve that describes oscillatory motion damped by dry friction
(figure 3). The maximal deflection decreases after each full-cycle of these oscillations by a constant
value equal to the doubled width of the stagnation interval (i.e., by the value 4ϕm). The oscillation
continues until the end point of some next in turn segment of the sine curve occurs within the dead zone
(−ϕm, ϕm).

Thus, in the case of dry friction, consecutive maximal deflections diminish linearly in a decreasing
arithmetic progression, and the motion stops after a final number of cycles, in contrast to the case of
viscous friction, for which the maximal displacements decrease exponentially in a geometric progression,
and for which the motion continues indefinitely.
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1.5 The Phase Trajectory
The character of oscillations in the presence of dry friction is given clearly by the phase trajectory shown
in figure 4. The system is initially at rest (ϕ̇(0) = 0) and displaced to the right (ϕ(0) = ϕ0 > ϕm). This
initial state is represented by the point on the curve which lies to the extreme right on the horizontal axis,
the ϕ-axis. The portion of the phase trajectory lying below the horizontal axis represents the motion
during the first half-cycle, when the flywheel is moving to the left. This curve is the lower half of an
ellipse (or of a circle if the scales have been chosen appropriately) whose center is at the point ϕm on the
horizontal axis. This point corresponds to the right-hand boundary of the stagnation interval.

Figure 4: The phase diagram of damping caused by dry friction

The second half-cycle, when the flywheel is moving to the right, is represented by half an ellipse
lying above the ϕ-axis, where angular velocities are positive. The center of this second semi-ellipse is
at the point −ϕm, on the ϕ-axis. The complete phase trajectory is formed by such increasingly smaller
semi-ellipses, alternately centered at ϕm and −ϕm. The diameters of these consecutive semi-ellipses lie
along the ϕ-axis and decrease each half-cycle by 2ϕm. The phase trajectory terminates on the ϕ-axis
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at the point at which the curve meets the ϕ-axis inside the dead zone (the portion of the ϕ-axis lying
between ϕm and −ϕm).

This phase trajectory is to be compared with that of the oscillator acted upon by viscous friction. In
the latter case, the curve spirals around a focal point located at the origin of the phase plane. The curve
consists of an infinite number of turns which gradually become smaller and which approach the focus
asymptotically. In the present case of dry friction, the loops of the phase curve are equidistant. The phase
trajectory consists of a finite number of cycles and terminates at the point at which it meets the segment
of the ϕ-axis between the points −ϕm and ϕm.

If dry friction in the system is accompanied by a rather weak viscous friction (γ < ω0), the semi-
ellipses become distorted and their axes shrink during the motion. The loops of the phase trajectory are
no longer equidistant. Nevertheless their shrinking does not last indefinitely: the phase trajectory in this
case also terminates after some finite number of turns around the origin when it reaches the stagnation
interval on the ϕ-axis.

1.6 Energy Transformations
While the flywheel is rotating in one direction, the torque Nmax of kinetic friction, independent of the
velocity, is constant, and the total energy of the oscillator decreases linearly with the angular displace-
ment, ϕ, of the flywheel. This linear dependence of the total energy on ϕ is clearly indicated in the
upper plot in figure 4, where the parabolic potential well of the elastic spring is shown. The representing
point whose ordinate gives the total energy E(ϕ) and whose abscissa gives the angular displacement of
the flywheel, travels in the course of time between the slopes of this well, gradually descending to the
bottom of the well. The trajectory of this point consists of rectilinear segments lying between the sides
of the well. These segments are straight because the negative work done by the force of dry friction is
proportional to the angle of rotation, ∆ϕ. The amount of this work |Nmax∆ϕ| equals the decrease −∆E
of total energy.

However, the dependence of total energy on time, E(t), is not linear because the rotation of the
flywheel is nonuniform. The time rate of dissipation of the total energy, −dE/dt, is proportional to the
magnitude of the angular velocity, |ϕ̇(t)|. Thus, the greatest rate of dissipation of mechanical energy
through friction occurs when the magnitude of the angular velocity, ϕ̇, is greatest, that is, when the
flywheel crosses the boundaries of the dead zone. Near the points of extreme deflection, where the
angular velocity is near zero, the time rate of dissipation of mechanical energy is smallest. Typical plots
of energy transformation are shown in figure 5.

Unlike the case of viscous friction, the oscillator with dry friction may retain some mechanical energy
Ef at the termination of the motion. Such occurs if the final angular displacement (within the dead zone)
is not at the midpoint of the stagnation interval. Then the spring remains strained, and its elastic potential
energy is not zero. The remaining energy does not exceed the value Dϕ2

m/2 = Nmaxϕm/2.
When the initial excitation is large enough, that is, when the initial energy is much greater than

Dϕ2
m/2, the oscillator executes a large number of cycles before the oscillations cease. In this case it is

reasonable to consider the total energy averaged over the period of an oscillation, 〈E(t)〉. The decrease of
〈E(t)〉 during a large number of cycles depends quadratically on the lapse of time because the amplitude
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Figure 5: Energy transformations in oscillations damped by dry friction

of oscillation decreases linearly with time and because the averaged total energy is proportional to the
square of the amplitude.

If we let tf be the final moment when oscillations cease, then at the time t the averaged total energy
〈E(t)〉 is proportional to (t − tf )

2. This statement (which clearly applies only for t < tf ) is exactly
true only when the flywheel comes to rest at the center of the stagnation interval. However, even if such
is not the case and there is a residual potential energy stored in the spring after the motion ceases, the
statement is approximately true.

1.7 The Role of Viscous Friction
In real systems dry friction is always accompanied to some extent by viscous friction. The damping of
oscillations in this case can also be investigated by the above-described method, namely by the stage-by-
stage solving of Eqs. (6) and (7) and by using the final mechanical state (the angular displacement and
velocity) of every half-cycle as the initial conditions for the next half-cycle. That is, the solutions are
joined by equating their angular displacements and angular velocities (always zero) at the boundaries.

The clearest representation of the mechanical evolution of the system experiencing both dry and
viscous friction is given by a phase diagram. Unlike the case of pure dry friction, the path in phase
space is no longer a series of diminishing semi-ellipses (or semicircles) with alternating centers. Instead
the phase trajectory consists of the shrinking alternating halves of spiral loops that are characteristic
of a linear damped oscillator. The focal points of these spirals alternate between the boundaries of the
stagnation interval.

To compare the relative importance of viscous versus dry friction, we consider below the decrease in
amplitude caused by each of these effects during one complete cycle.

It was established above that under the action of dry friction this decrease equals the constant value
of the doubled width of the stagnation interval 4ϕm. On the other hand, viscous friction decreases the
amplitude of the oscillation during a complete cycle by an amount which is not constant but rather is
proportional to the amplitude. Indeed, for γT0 ¿ 1, i.e., for rather large values of the quality factor
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Q, expression for the decrease ∆a during one period T0 in the momentary amplitude a due to viscous
friction can be expanded in a series:

∆a = a(1− e−γT0) ≈ aγT0 = aγ
2π

ω0

=
πa

Q
. (8)

Equating ∆a to the doubled width 4ϕm of the stagnation interval, we find the amplitude ã which delimits
the predominance of one type of friction over the other:

ã =
4ϕm

γT0

=
4

π
ϕmQ ≈ ϕmQ. (9)

If the actual amplitude is greater than ã, the effect of viscous friction dominates. Conversely, if the
actual amplitude is less than ã, the effect of dry friction dominates.

When the initial excitation of the oscillator is great enough, the amplitude may exceed the value
ã ≈ Qϕm. In this instance, the initial damping of the oscillations is influenced mainly by viscous
friction. This case may be illustrated in the phase diagram. The decrement in the width of several initial
loops of the phase trajectory (caused by viscous friction) is greater than the separation of the centers of
adjoining half-loops (i.e., the decrement exceeds the width of the stagnation interval). It is clear that in
this case the shrinking of the spiral caused by viscous friction is more influential in showing the effects
of damping than is the alternation of the centers of half-loops caused by dry friction.

When the value of a falls below that of ã (when a < ã = Qϕm), the effects of dry friction dominate.
In the phase plane this dominance produces a trajectory of consecutive half-loops whose centers alter-
nately jump between the ends of the stagnation interval, −ϕm and ϕm, until the phase trajectory reaches
the segment of the ϕ-axis in the stagnation interval.

When viscous friction is strong, that is, when values of the quality factor Q are less than the critical
value of 0.5 (when γ > ω0), and when the initial displacement of the flywheel ϕ(0) lies beyond the
boundaries of the stagnation interval, |ϕ(0)| > ϕm, the needle of the released flywheel moves without
oscillating toward the point of the dial which corresponds to the nearest boundary of the stagnation
interval. At this point the flywheel stops turning.

2 Questions, Problems, Suggestions
The preceding analysis of the behavior of the oscillator under the influence of dry friction is based upon
the method of the stage-by-stage analytic integration of the differential equations which describe the
system. These equations are linear for the time intervals occurring between consecutive extreme deflec-
tions. These intervals are bounded by the instants at which the angular velocity is zero. The complete
solution is obtained by joining together these half-cycle solutions for consecutive time intervals. On the
other hand, the computer simulation of the torsion pendulum in this software package is based on the
numerical integration of differential equations (the Runge—Kutta method to fourth order). To answer
the questions below, you may apply the analysis described above. Then you can verify your analytic
results by simulating the experiment on the computer.
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2.1 Damping Caused by Dry Friction
The strength of dry friction in the system is characterized by the width of the dead zone. This interval is
defined in the program when you input the value of the angle ϕm which sets the limits of the dead zone
on both sides of the middle position at which the spring is unstrained. Total width of this dead zone is
2ϕm. The value of ϕm must be expressed in degrees.

1.1 Oscillations without Dry Friction. Begin with the value ϕm = 0 corresponding to the absence
of dry friction. Show that in this case the system displays the familiar behavior of a linear oscillator,
i.e., simple harmonic oscillations with a constant amplitude in the absence of friction and with an ex-
ponentially decaying amplitude in the presence of viscous friction. The strength of viscous friction is
characterized by the quality factor Q.

1.2 Dry Friction after an Initial Displacement. To display the role of dry friction clearly, choose
a large value of the angle ϕm which determines the limits of the dead zone (say, 15 to 20 degrees),
and let viscous friction be zero. Such conditions are somewhat unrealistic. They are far unlike the
situation characteristic of measuring instruments using a needle, such as moving-coil galvanometers.
These instruments are constructed so that the dead zone is as small as possible, and critical viscous
damping is deliberately introduced in order to avoid taking a reading from an oscillating needle. When
an instrument is critically damped, its moving system just fails to oscillate, and it comes to rest in the
shortest possible time. If the dead zone is narrow, the needle stops at a position very close to the dial
point which gives the true value of the measured quantity. Here, on the other hand, conditions are chosen
to clarify the role of dry friction.

(a) What can you say about the succession of maximal deflections if damping is caused only by dry
friction with the ideal z-characteristic? What is the law of their diminishing? How is the difference of
consecutive maximal deflections related to the half-width of the dead zone?

(b) Let the angle ϕm that defines the boundaries of the stagnation zone be, say, 15◦, the initial angle
of deflection ϕ0 be 160◦, and the initial angular velocity be zero. Calculate the point of the dial at which
the needle eventually comes to rest. How many semi-ellipses form the phase trajectory of this motion,
from its initial point to the point at which the motion stops? Verify your predictions by simulating the
motion on the computer.

(c) In the graph of the time dependence of the deflection angle, where are the midpoints of the half-
cycles of the sinusoidal oscillations located? Note how these individual segments of the sine curves are
joined to form a continuous plot of damped oscillations.

(d) In the graph of the angular velocity versus time, note the abrupt bends in the curve at the instants
at which the midpoints abruptly replace one another. What is the reason for these bends? Prove that
these instants are separated by half the period of harmonic oscillations in the absence of dry friction.
(Note that points on the time scale of the graphs correspond to integral multiples of the period.)

1.3∗ Dry Friction after an Initial Push. Choose different initial conditions: let the initial deflection
be zero, and the initial angular velocity be, say, 2ω0 (where ω0 is the natural frequency of oscillations).
Use the same value ϕm = 15◦ as above.

(a) Calculate the maximal deflection of the needle.
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(b) To what position on the dial does the needle point when oscillations cease? How many turns
are present in the complete phase trajectory of this motion? Verify your answer using a simulation
experiment on the computer.

1.4∗ Damping by Dry Friction at Various Initial Conditions. Assuming the same width of the
dead zone as above, calculate the maximal angle of deflection and the final position on the dial to which
the needle points when oscillations cease, for the more complicated initial conditions:

(a) The initial deflection angle ϕ(0) = 135◦, and the initial angular velocity ϕ̇(0) = 1.5ω0 (ω0 is the
natural frequency of the oscillator).

(b) The initial deflection angle ϕ(0) = −135◦, and the initial angular velocity ϕ̇(0) = 1.5ω0.
Verify your calculated values in a simulation experiment on the computer.

1.5∗ Energy Dissipation at Dry Friction.
(a) The graph of the total mechanical energy versus the angle of deflection consists of rectilinear

segments joining the slopes of the parabolic potential well (when you work in the section “Energy trans-
formations” of the computer program). Suggest an explanation.

(b) Letting the initial angular velocity ϕ̇(0) = 2ω0, where ω0 is the natural frequency, and using
energy considerations, calculate the entire angular path of the flywheel, excited from the midpoint of the
dead zone by an initial push if the half-width of the dead zone ϕm = 10◦.

1.6 Oscillations in the Case of a Narrow Dead Zone. Choose a small value for the angle ϕm (less
than 5◦), and set the initial angular displacement to be many times the width of the dead zone, 2ϕm.

(a) How many cycles does the flywheel execute before stopping?
(b) When the number of cycles is large, the plots clearly demonstrate the linear decay of the amplitude

and the equidistant character of the loops in the phase diagram. What can you say about the time
dependence of the total energy, averaged over a cycle?

2.2 Influence of Viscous Friction
2.1∗ Transition of the Main Role from Viscous to Dry Friction. When damping is caused both

by dry and viscous friction, it is interesting to observe the change in the character of damping when the
main contribution passes from viscous to dry friction.

Let the angle ϕm that determines the width of the dead zone be about 1◦ and let the quality factor
Q which characterizes the strength of viscous friction be about 30. Let the initial angular deflection be
120◦ and the initial angular velocity be zero.

(a) Does dry or does viscous friction determine the initial damping effects?
(b) At what value of the amplitude does the character of damping change? How does this change

manifest itself on the plots of time dependence of the angle of deflection and of the angular velocity? On
the phase trajectory?

2.2∗ Both Viscous and Dry Friction. Let the boundaries of the stagnation interval be at ϕm = 10◦

and the quality factor Q = 5. Let the initial velocity be 2ω0 and the initial deflection be zero.
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(a) Calculate the maximal angular deflection of the needle at these initial conditions. Verify your
answer experimentally.

(b) What kind of friction, dry or viscous, initially dominates the damping of oscillations?
(c)∗∗ Let the boundaries of the stagnation zone be determined by the angle ϕm = 10◦. Let the

quality factor Q be 3, the initial deflection be 65◦, and the initial angular velocity be−2ω0. Calculate
the maximal angular deflection of the needle in the direction opposite the initial deflection. Verify your
answer experimentally.

2.3 Dry Friction and Critical Viscous Damping.
(a) Choose the quality factor Q to be near the critical value 0.5 and investigate the character of

damping experimentally. Where within the limits of the dead zone is the needle most likely to stop if the
quality Q is slightly greater than the critical value? Give some physical explanation of your observations.

(b) Where would the needle stop if the quality factor Q is less than 0.5 (that is, if the system is
overdamped)? Does the answer depend on the initial conditions?

2.3 Supplement: Summary of the Principal Formulas

The differential equation of motion of an oscillator acted upon by dry friction:

Jϕ̈ = −D(ϕ + ϕm) for ϕ̇ > 0,

Jϕ̈ = −D(ϕ− ϕm) for ϕ̇ < 0,

where ϕm is the angle corresponding to the boundaries of the dead zone. If in addition, viscous friction
is present, a term proportional to the angular velocity is also present:

ϕ̈ = −ω2
0(ϕ + ϕm)− 2γϕ̇ for ϕ̇ > 0,

ϕ̈ = −ω2
0(ϕ− ϕm)− 2γϕ̇ for ϕ̇ < 0,

where ω0 is the natural frequency of oscillations in the absence of friction:

ω2
0 =

D

J
.

The damping factor γ that characterizes the viscous friction is related to the quality factor Q by the
equation:

Q =
ω0

2γ
.

The boundary value of the amplitude that delimits the two cases in which the effects either of viscous
friction or of dry friction predominate:

a =
4ϕm

γT
=

4

π
ϕmQ ≈ ϕmQ.


