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Abstract

All kinds of motion of a rigid pendulum (including
swinging with arbitrarily large amplitudes and com-
plete revolutions) are investigated both analytically
and with the help of computerized simulations based
on the educational software package PHYSICS OF
OSCILLATIONS developed by the author (see in
the web http://www.aip.org/pas). The simulation
experiments of the package reveal many interesting
peculiarities of this famous physical model and aid
greatly an understanding of basic principles of the
pendulum motion. The computerized simulations
complement the analytical study of the subject in a
manner that is mutually reinforcing.

1 Introduction: The Investi-
gated Physical System

The simple pendulum is a famous physical model fre-
quently encountered in textbooks and papers primar-
ily due to its important role in the history of physics.
This versatile model is useful and interesting not only
in itself as the most familiar example of a nonlinear
mechanical oscillator but more importantly because
many problems in various branches of physics can
be reduced to the differential equation describing the
motion of a pendulum. The theory of solitons (soli-
tary wave disturbances traveling in nonlinear media
with dispersion), the problem of superradiation in

quantum optics, and Josephson effects in weak su-
perconductivity are the most important examples.

One may wonder whether it is possible to add
something new to the old problem of the pendulum
motion. However, every generation of physics stu-
dents, as well as their teachers, discover anew the
attractiveness of this model and surprising beauty in
various aspects of its behaviour.

In this paper we describe a combined analytical
and computerized approach to the eternal problem
of the pendulum motion. Our study is based on the
usage of the educational software package PHYSICS
OF OSCILLATIONS [1] developed by the author.
This package of interactive programs is a kind of
desk-top laboratory designed for exploration of the
mathematical models of various linear and nonlin-
ear mechanical oscillatory systems. The simulations
allow us to directly observe the motion and to ob-
tain graphs of the variables that describe the system
along with phase diagrams and graphs of the energy
transformations. The graphs and phase diagrams are
plotted on the screen simultaneously with the display
of the motion.

The simulations [1] bring to life many abstract con-
cepts of the physics of oscillations. Varying experi-
mental conditions, we can investigate interesting sit-
uations which are inaccessible in a real laboratory ex-
periment. The screen displays subtle details that are
easily missed in direct observation. With these highly
interactive programs, the students have an oppor-
tunity to carry out interesting mini-research physics
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projects on their own.
One of the simulation programs in [1] is especially

suited for exploration of an ordinary pendulum in a
uniform gravitational field, that is, of any rigid body
that can swing and rotate about some fixed horizontal
axis (a compound, or physical pendulum). Its simplest
form is represented by a massive small bob at the end
of a rigid rod of negligible mass (a simple pendulum).
We employ a rigid rod rather than a flexible string in
order to examine complete revolutions of the pendu-
lum as well as its swinging to and fro. Special atten-
tion in our discussion is devoted to cases in which the
swing approaches 180◦. Revolutions of the pendulum
occurring when the total energy slightly exceeds the
potential energy of the inverted pendulum are also
investigated in detail.

In the state of stable equilibrium the center of mass
of the pendulum is located vertically below the axis of
rotation. When the pendulum is deflected from this
position through an angle ϕ, the restoring torque of
the gravitational force is proportional to sinϕ. In
the case of small angles ϕ (i.e., for small oscillations
of the pendulum) the values of the sine and of its
argument nearly coincide (sin ϕ ≈ ϕ), and the pen-
dulum behaves like a linear oscillator. In particular,
in the absence of friction it executes simple harmonic
motion. However, when the amplitude is large, the
motion is oscillatory (and periodic in the absence of
friction) but no longer simple harmonic. In this case,
a graph of the angular displacement versus time no-
ticeably departs from a sine curve, and the period
of oscillation noticeably depends on the amplitude.
Figure 1 shows the screen (illustrating the output of
the corresponding program in [1]) with an example of
time-dependent graphs of the angle and angular ve-
locity for such non-sinusoidal oscillations whose am-
plitude equals 179.00 degrees. This screen shows also
their spectrum, that is, the sinusoidal components
(harmonics) with frequencies ω, 3ω, 5ω, etc. We note
that the period T = 2π/ω of these oscillations (as well
as the period of the principal harmonic component)
equals almost four periods T0 = 2π/ω0 of oscillations
with infinitely small amplitudes.

If the angular velocity imparted to the pendulum
at its initial excitation is great enough, the pendulum
at first executes complete revolutions losing energy

Figure 1: Spectrum of large oscillations.

through friction, after which it oscillates to and fro.

2 The Physical Parameters and
Differential Equation for the
Pendulum

The equation of rotation of a solid about a fixed hor-
izontal axis in the absence of friction in the case of a
physical pendulum in a uniform gravitational field is:

Jϕ̈ = −mga sin ϕ. (1)

Here J is the moment of inertia of the pendulum rel-
ative the axis of rotation, a is the distance between
this axis and the center of mass, and g is the acceler-
ation of gravity. The left-hand side of Eq. (1) is the
time rate of change of the angular momentum, and
the right-hand side is the restoring torque of the force
of gravity. This torque is the product of the force mg
(applied at the center of mass) and the lever arm
a sin ϕ of this force. Dividing both sides of Eq. (1) by
J we have:

ϕ̈ + ω2
0 sin ϕ = 0, (2)

where the notation ω2
0 = mga/J is introduced.

For a simple pendulum a = l, J = ml2, and so
ω2

0 = g/l. For a physical pendulum, the expression
for ω2

0 can be written in the same form as for a simple
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pendulum provided we define a quantity l to be given
by l = J/(ma). It has the dimension of length, and
is called the reduced or effective length of a physical
pendulum. Since the differential equation of motion
for a physical pendulum with an effective length l is
the same as that for a simple pendulum of the same
length l, the two systems are dynamically equivalent.
This means that we need not distinguish one from
the other in our investigation because both are de-
scribed by the same mathematical model. At small
angles of deflection from stable equilibrium, we can
replace sin ϕ with ϕ in Eq. (2). Then Eq. (2) becomes
the differential equation of motion of a linear oscil-
lator, e.g., of a weighted spring that obeys Hook’s
law. Therefore, the quantity ω0 in the differential
equation of the pendulum, Eq. (2), has the physical
sense of the angular frequency of small oscillations
of the pendulum in the absence of friction. As an
equivalent physical parameter of the pendulum, we
can use the period of small non-damped oscillations
T0 = 2π/ω0 = 2π

√
l/g.

In the presence of a torque due to linear (say, vis-
cous) friction, we must add a term to the right-hand
side of Eq. (2) which is proportional to the angular
velocity ϕ̇. Thus, with friction included, the differen-
tial equation of the pendulum assumes the form:

ϕ̈ + 2γϕ̇ + ω2
0 sin ϕ = 0. (3)

Therefore the pendulum is characterized by two pa-
rameters: the angular frequency ω0 of small free oscil-
lations, and the damping constant γ, which has the di-
mensions of frequency (or of angular velocity). As in
the case of a damped linear oscillator, it is convenient
to use the dimentionless quality factor Q = ω0/(2γ)
rather than the damping constant γ to measure the
effect of damping (see the following section).

The principal difference between Eq. (3) for the
pendulum and the corresponding differential equa-
tion of motion for a linear oscillator (e.g., a weighted
spring) is that Eq. (3) is a nonlinear differential equa-
tion. The difficulties in obtaining an analytical solu-
tion to Eq. (3) are caused by its nonlinearity. In the
general case it is impossible to express the solution of
Eq. (3) in elementary functions (although in the ab-
sence of friction the solution of Eq. (2) can be given

in terms of special functions called elliptic integrals).

3 Viscous Damping of Small
Oscillations

In the case of small amplitudes sin ϕ ≈ ϕ, and the
exact equation of the pendulum, Eq. (3), can be ap-
proximated by the following linear equation:

ϕ̈ + 2γϕ̇ + ω2
0ϕ = 0. (4)

When friction is so weak that γ < ω0, the general
solution of Eq. (4) has an oscillatory character and
can be written in the form:

ϕ(t) = A0 exp(−γt) cos(ωt + δ0). (5)

In the case of weak or moderate damping, the time-
dependent factor A0 exp(−γt) in (5) can be treated
as an exponentially decreasing amplitude of dimin-
ishing oscillations. After an interval τ = 1/γ (after
the time of damping), the amplitude is e ≈ 2.72 times
smaller than its initial value. The initial amplitude
A0 and the initial phase δ0 depend on the mode of ex-
citation. On the contrary, the frequency ω appearing
in the cosine term in (5) is independent of the initial
conditions being determined solely by the properties
of the system:

ω =
√

ω2
0 − γ2 = ω0

√
1− (γ/ω0)2. (6)

In the case of weak damping, when the constant γ
is small compared to the frequency ω0 of undamped
oscillations, the frequency ω is very close to ω0 (and
the conventional period T = 2π/ω is very close to
T0 = 2π/ω0):

ω ≈ ω0 − γ2/(2ω0), T ≈ T0[1 + γ2/(2ω2
0)].

The fractional difference of the frequencies (ω0 −
ω1)/ω0 (and the periods) is proportional to the square
of the small parameter γ/ω0.

When γ ¿ ω0, or τ À T0 = 2π/ω0 (condition
of weak damping), the oscillator executes a large
number N of oscillations during the decay time τ :
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N = τ/T0 À 1. Consecutive maximal deflections
from the equilibrium position diminish in a geomet-
ric progression. Letting ϕn be the maximal angular
displacement of the n-th oscillation, we have

ϕn+1/ϕn ≈ exp(−γT0) ≈ 1− γT0.

That is, the ratio of successive terms in this infinite
geometric progression is less than unity by the small
value γT0 = T0/τ ¿ 1.

The strength of viscous friction in the system is
usually characterized either by the damping constant
γ, which, as can be seen from Eq. (4), has the dimen-
sion of frequency, or by a more convenient dimension-
less quantity Q, called the quality factor. The quality
factor Q is defined as multiplied by 2π ratio of the en-
ergy stored by the oscillator to the energy dissipated
through friction during a period. It follows from this
definition that Q equals the ratio of ω0 to 2γ (see, for
example, [2]):

Q =
ω0

2γ
= π

τ

T0
. (7)

The number of cycles during which the amplitude
of oscillations decreases by a factor e ≈ 2.72 is given
by Q/π, and the number of cycles N1/2 during which
the amplitude is halved is given by:

N1/2 = (ln 2/π)Q = 0.22 Q = Q/4.53. (8)

A graph of damped oscillations is shown in Fig-
ure 2. For the value Q = 18.1 the amplitude halves
after four cycles. It halves again (up to 1/4 of its
initial value) after the next four cycles of oscillations.

Figure 2: Graphs of damped oscillations.

Free oscillations are characterized by the exchange
of energy between its potential and kinetic forms. At
the points of maximum displacement from the equi-
librium position, the kinetic energy is zero, and the
total energy is the potential energy. A quarter of a
period later the pendulum passes through the equi-
librium position where the potential energy is zero,
and the total energy is the kinetic energy. During
the next quarter of a period, the reverse exchange of
energy occurs. Such transformations happen twice
during one period. That is, oscillations of the two
kinds of energy occur 180◦ out of phase with one an-
other with double the natural frequency of the pen-
dulum. Figure 3 shows the transformations of energy
occurring in damped oscillations, along with the plots
of the angular displacement and the angular velocity
(for Q = 9.1).

Figure 3: Graphs of the energy transformations dur-
ing damped natural oscillations.

In the presence of friction, the exchanges between
kinetic and potential energy are partially irreversible
because of the dissipation of energy. This dissipa-
tion occurs nonuniformly during a complete cycle:
its rate, −dE/dt, is zero when the pendulum, in a
given cycle, is at the extremes of its motion and its
angular velocity, ϕ̇, is zero. The rate of dissipation is
greatest when the pendulum is moving in the vicin-
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ity of the equilibrium position, and its angular ve-
locity is maximal. Indeed, the rate of energy dissi-
pation −dE/dt = −Nfrϕ̇ caused by viscous friction
is proportional to the square of the angular veloc-
ity and hence to the momentary value of the kinetic
energy Jϕ̇2/2 of the pendulum. The statement, fre-
quently encountered in textbooks, that the energy
of a damped oscillator decays exponentially, is valid
only on the average: It applies strictly only to values
of the total energy at discrete time instants separated
by a period (and half-period).

4 The Period of Small
Oscillations

Nonlinear character of the pendulum is revealed pri-
marily in dependence of the period of oscillations on
the amplitude. To find an approximate formula for
this dependence, we should keep the next term in the
expansion of sin ϕ in Eq. (2) into the power series:

sin ϕ ≈ ϕ− 1
6
ϕ3. (9)

An approximate solution to the corresponding non-
linear differential equation (for the conservative pen-
dulum with γ = 0),

ϕ̈ + ω2
0ϕ− 1

6
ω2

0ϕ3 = 0, (10)

can be searched as a superposition of the sinusoidal
oscillation ϕ(t) = ϕm cosωt and its third harmonic
εϕm cos 3ωt whose frequency equals 3ω. (We assume
t = 0 to be the moment of maximal deflection). This
solution is found in many textbooks (see, for example,
[3]). The corresponding derivation is a good exercise
for students, allowing them to get an idea of analyt-
ical perturbational methods. The fractional contri-
bution ε of the third harmonic equals ϕ2

m/192, where
ϕm is the amplitude of the principal harmonic com-
ponent whose frequency ω differs from the limiting
frequency ω0 of small oscillations by a term propor-
tional to the square of the amplitude:

ω ≈ ω0(1− ϕ2
m/16), T ≈ T0(1 + ϕ2

m/16). (11)

The same approximate formula for the period,
Eq. (11), can be obtained from the exact solution
expressed in terms of elliptic integrals (see, for exam-
ple, the textbooks [3], [4], or [5]) by expanding the
exact solution into a power series with respect to the
amplitude ϕm.

Equation (11) shows that, say, for ϕm = 30◦ (0.52
rad) the fractional increment of the period (com-
pared to the period of infinitely small oscillations)
equals 0.017 (1.7%). The fractional contribution
of the third harmonic in this non-sinusoidal oscilla-
tion equals 0.14%, that is, its amplitude equals only
0.043◦.

The simulation program [1] allows us to verify this
approximate formula for the period. The table be-
low gives the values of T (for several values of the
amplitude) calculated with the help of Eq. (11) and
measured in the computational experiment. Compar-
ing the values in the last two columns, we see that
the approximate formula, Eq. (11), gives the value of
the period for the amplitude of 45◦ with an error of
only (1.0400− 1.0386)/1.04 = 0.0013 = 0.13%. How-
ever, for 90◦ the error is already 2.24%. The error
does not exceed 1% for amplitudes up to 70◦.

Amplitude T/T0 T/T0

ϕm (calculated) (measured)

30◦ (π/6) 1.0171 1.0175
45◦ (π/4) 1.0386 1.0400
60◦ (π/3) 1.0685 1.0732
90◦ (π/2) 1.1539 1.1803

120◦ (2π/3) 1.2742 1.3730
135◦ (3π/4) 1.3470 1.5279
150◦ (5π/6) 1.4284 1.7622

5 The Phase Portrait and
Large Oscillations

The mechanical state of a pendulum at any instant
is determined by the two quantities: the angular dis-
placement ϕ and the angular velocity ϕ̇ (or instead
by the angular momentum Jϕ̇). The evolution of the
mechanical state of the system during its entire mo-
tion can be graphically demonstrated very clearly by
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a phase diagram, i.e., a graph which plots the angular
velocity ϕ̇ (or the angular momentum Jϕ̇) versus the
angular displacement ϕ. In general, the structure of a
phase diagram tells us a great deal about the possible
motions of a nonlinear physical system.

If the motion of the physical system is periodic, the
representative point, moving clockwise, generates a
closed path in the phase plane. The phase trajectory
of a periodic motion is closed, because the system
returns to the same mechanical state after a full cycle.

The phase diagram for harmonic oscillations (e.g.,
for oscillations in a linear system without friction)
is an ellipse (or a circle at the appropriate choice of
the scales). The points of intersection of the phase
curve with the ϕ-axis correspond to maximal deflec-
tions of the pendulum from the equilibrium position.
At these turning points, the sign of the angular ve-
locity ϕ̇ changes, and the tangent to the phase curve
is perpendicular to the abscissa axis.

We can construct the family of phase trajectories
for a conservative system (e.g., for the pendulum)
without explicitly solving the differential equation of
motion of the system. The equations for phase trajec-
tories follow directly from the law of the conservation
of energy. The potential energy Epot(ϕ) of a pendu-
lum in the gravitational field depends on the angle of
deflection ϕ measured from the equilibrium position:

Epot(ϕ) = mga(1− cos ϕ). (12)

A graph of Epot(ϕ) is shown in the upper part of
Figure 4. The potential energy of the pendulum has a
minimal value of zero in the lower stable equilibrium
position (at ϕ = 0), and a maximal value of 2mga in
the inverted position (at ϕ = ±π) of unstable equi-
librium.
(The maximal value of the potential energy is as-
sumed to be the unit of energy in Figure 4). The
dashed line shows the parabolic potential well for a
linear oscillator whose period is independent of the
amplitude (and of the energy) and equals the period
of infinitely small oscillations of the pendulum.

In the absence of friction, the total energy E of the
pendulum, i.e., the sum of its kinetic energy, 1

2Jϕ̇2,
and potential energy, remains constant during the
motion:

Figure 4: The potential well and the phase portrait
of the conservative pendulum.

1
2
Jϕ̇2 + mga(1− cosϕ) = E. (13)

This equation gives the relation between ϕ̇ and ϕ,
and therefore is the equation of the phase trajectory
which corresponds to a definite value E of total en-
ergy. It is convenient to express Eq. (13) in a slightly
different form. Recalling that mga/J = ω2

0 and defin-
ing the quantity E0 = Jω2

0/2 (the quantity E0 has the
physical sense of the kinetic energy of a body with
the moment of inertia J , rotating with the angular
velocity ω0), we rewrite Eq. (13):

ϕ̇2

ω2
0

+ 2(1− cosϕ) =
E

E0
. (14)

The phase trajectory of a conservative system is
symmetric about the horizontal ϕ-axis. This symme-
try means that the motion of the pendulum in the
clockwise direction is mechanically the same as the
motion in the counterclockwise direction. In other
words, the motion of a conservative system is re-
versible: if we instantaneously change the sign of its
velocity, the representative point jumps to the sym-
metric position of the same phase trajectory on the
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other side of the horizontal ϕ-axis. In the reverse mo-
tion the pendulum passes through each spatial point
ϕ with the same speed as in the direct motion. Since
changing the sign of the velocity (ϕ̇ → −ϕ̇) is the
same as changing the sign of time (t → −t), this
property of a conservative system is also referred to
as the symmetry of time reversal.

The additional symmetry of the phase trajectories
of the conservative pendulum about the vertical ϕ̇-
axis (with respect to the change ϕ → −ϕ) follows
from the symmetry of its potential well: Epot(−ϕ) =
Epot(ϕ).

If the total energy E of the pendulum is less
than the maximal value of its potential energy (E <
2mga = 4E0), that is, if the total energy is less than
the height of the potential barrier in Figure 4, the
pendulum swings to and fro between the extreme
deflections ϕm and −ϕm. These angles correspond
to the extreme points at which the potential energy
Epot(ϕ) becomes equal to the total energy E of the
pendulum. If the amplitude is small (ϕm ¿ π/2),
the oscillations are nearly sinusoidal in time, and
the corresponding phase trajectory is nearly an el-
lipse. The elliptical shape of the curve follows from
Eq. (14) if we substitute there the approximate ex-
pression cos ϕ ≈ 1− ϕ2/2 valid for small angles ϕ:

ϕ̇2

Eω2
0/E0

+
ϕ2

E/E0
= 1. (15)

This is the equation of an ellipse in the phase plane
(ϕ, ϕ̇). Its horizontal semiaxis equals the maximal
deflection angle ϕm =

√
E/E0. Since both semiaxes

are proportional to
√

E, the ellipses for different ener-
gies E (while E ¿ E0) are homothetic. If the angular
velocity ϕ̇ on the ordinate axis is plotted in units of
the angular frequency ω0 of small free oscillations,
the ellipse (15) becomes a circle.

The shape of the closed phase trajectory, elliptical
at small amplitudes, gradually changes as the am-
plitude and the energy are increased. The width of
the phase trajectory (along ϕ-axis) increases more
rapidly than does its height as the total energy E in-
creases to 2mga. The phase trajectory is stretched
horizontally because for the same total energy the
amplitude of oscillations in the potential well of the

pendulum is greater than it is in the parabolic po-
tential well of the linear oscillator. The greater the
total energy E (and thus the greater the amplitude
ϕm), the greater the departure of the phase trajec-
tory from an ellipse and the greater the departure of
the motion from simple harmonic.

With the growth of the angular displacement the
restoring torque for the pendulum increases not as
rapidly, and the slopes of the potential well rise not
as steeply as for the linear oscillator: The pendulum
is a system with a “soft” restoring torque. Therefore
the period of oscillations, while independent of the
amplitude for the linear oscillator, grows with the
amplitude for the pendulum.

When the pendulum is deflected from the vertical
position by an angle in the neighborhood of 90◦, the
restoring torque of the gravitational force is almost
constant: its dependence on ϕ is insignificant while
ϕ varies in the vicinity of 90◦. The slope of the graph
of potential energy versus ϕ is nearly constant in the
vicinity of its point of inflection ϕ = 90◦. There-
fore the pendulum moves there with almost constant
angular acceleration, and the time dependence of its
angular velocity is nearly linear. Hence at large am-
plitudes (110 – 140◦) the graph of the angular velocity
is almost saw-toothed. For motion with constant ac-
celeration, the graph of displacement is a parabola.
Therefore the segments of the graph of ϕ(t) (which
correspond to rectilinear segments of the ϕ̇(t) graph)
are nearly parabolic.

At large amplitudes the pendulum spends more
time near the extreme points (or turning points) at
which its direction of motion is reversed. The crests
of the graph of ϕ(t) are flattened, and those of the
ϕ̇(t) graph are sharpened. These changes in the shape
of the graphs and in the period of oscillations are
clearly seen in Figure 5.

The lower part of Figure 5 shows time-dependent
graphs of the potential, kinetic, and total energies
of the pendulum. In the case of a linear oscillator
whose potential well is parabolic, time dependencies
of both potential and kinetic energies are sinusoidal,
and their time average values are equal to one an-
other. The upper slopes of the potential well of the
pendulum are not as steep as those of the parabola,
and so the pendulum spends more time near the ex-
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Figure 5: The graphs of large oscillations in the ab-
sence of friction (ϕmax = 170◦).

treme points at large deflections, where its potential
energy is greater than kinetic energy. Crests of the
graph of the potential energy Epot(t) become wider
than the valleys between them. The opposite changes
occur with the graph of the kinetic energy Ekin(t).
Although maximum values of both potential and ki-
netic energies are equal to the constant value of total
energy E, their time-averaged values become differ-
ent as the amplitude is increased: The average value
of the potential energy becomes greater than that of
the kinetic energy.

If E > 2mga, the kinetic energy and the angu-
lar velocity of the pendulum are non-zero even at
ϕ = ±π. In contrast to the case of swinging, now the
angular velocity does not change its sign. The pen-
dulum executes rotation in a full circle. This rotation
is nonuniform. When the pendulum passes through
the lowest point, its angular velocity is greatest in
magnitude.

In the phase plane, rotation of the pendulum is
represented by the paths which continue beyond the
vertical lines ϕ = ±π, repeating themselves every
full cycle of revolution, as shown in Figure 4. Up-
per paths lying above the ϕ-axis, where ϕ̇ is positive
and ϕ grows in value, correspond to counterclockwise

rotation, and paths below the axis, along which the
representative point moves from the right to the left,
correspond to clockwise rotation of the pendulum.

The angles ϕ and ϕ ± 2π, ϕ ± 4π, . . . denote the
same position of the pendulum and thus are equiva-
lent. Thus it is sufficient to consider only a part of
the phase plane, e.g., the part enclosed between the
vertical lines ϕ = −π and ϕ = π (see Figure 4). The
cyclic motion of the pendulum in the phase plane is
then restricted to the region lying between these ver-
tical lines. We can identify these lines and assume
that when the representative point leaves the region
crossing the right boundary ϕ = π, it enters simulta-
neously from the opposite side at the left boundary
ϕ = −π (for a counterclockwise rotation of the pen-
dulum).

We can imagine the two-dimensional phase space
of a rigid pendulum not only as a part of the plane
(ϕ, ϕ̇) enclosed between the vertical lines ϕ = +π and
ϕ = −π, but also as a continuous surface, namely, the
surface of a cylinder. We may do so because oppos-
ing points on these vertical lines have the same value
of ϕ̇ and describe physically equivalent mechanical
states, and the dependence of the restoring gravita-
tional torque on ϕ is periodic. (The potential energy
Epot(ϕ) = mga(1− cosϕ) is periodic). Therefore we
can cut out this part of the phase plane and roll it
into a cylinder so that the bounding lines ϕ = +π and
ϕ = −π are joined. A phase curve circling around the
cylinder corresponds to a nonuniform rotational mo-
tion of the pendulum.

6 Limiting Motion along the
Separatrix

The phase trajectory corresponding to a total energy
E which is equal to the maximal possible potential
energy, namely Epot(π) = 2mga, is of special in-
terest. It separates the central region of the phase
plane which is occupied by the closed phase trajecto-
ries of oscillations from the outer region, occupied by
the phase trajectories of rotations. This boundary is
called the separatrix. In Figure 4 it is singled out by a
thick line. The separatrix divides the phase plane of a
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conservative pendulum into regions which correspond
to different types of motion. The equation of the sep-
aratrix follows from Eq. (13) by setting E = 2mga,
or from Eq. (14) by setting E = 4E0 = 2Jω2

0 :

ϕ̇ = ±2ω0 cos(ϕ/2). (16)

The limiting motion of a conservative pendulum
with total energy E = 2mga is worth a detailed in-
vestigation. In this case the representative point in
the phase plane moves along the separatrix.

When the pendulum with the energy E = 2mga
approaches the inverted position at ϕ = π or ϕ =
−π, its velocity approaches zero, becoming zero at
ϕ = ±π. This state is represented in the phase plane
by the saddle points ϕ = π, ϕ̇ = 0 and ϕ = −π, ϕ̇ = 0
where the upper and lower branches of the separa-
trix (Eq. (16)) meet on the ϕ-axis. Both these points
represent the same mechanical state of the system,
that in which the pendulum is at rest in the unstable
inverted position. The slightest initial displacement
of the pendulum from this point to one side or the
other results in its swinging with an amplitude which
almost equals π, and the slightest initial push causes
rotational motion of the pendulum in a full circle.
With such swinging or rotation, the pendulum re-
mains in the vicinity of the inverted position for an
extended time.

For the case of motion along the separatrix, i.e.,
for the motion of the pendulum with total energy
E = 2mga = 4E0, there exist an analytical solution
(in elementary functions) for the angle of deflection
ϕ(t) and for the angular velocity ϕ̇(t). Integration
of the differential equation Eq. (16) with respect to
time (for the positive sign of the root) at the initial
condition ϕ(0) = 0 yields:

−ω0t = ln tan[(π − ϕ)/4], (17)

whence we obtain for ϕ(t):

ϕ(t) = π − 4 arctan(e−ω0t). (18)

This solution describes a counterclockwise motion
beginning at t = −∞ from ϕ = −π. At t = 0 the
pendulum passes through the bottom of its circular

path, and continues its motion until t = +∞, asymp-
totically approaching ϕ = +π. A graph of ϕ(t) for
this motion is shown in Figure 6.

Figure 6: The graphs of ϕ and ϕ̇ for the limiting
motion (total energy E = 2mga = 4E0).

The second solution which corresponds to the
clockwise motion (to the motion along the other
branch of the separatrix in the phase plane) can be
obtained from Eq. (18) by the transformation of time
reversal. Solutions with different initial conditions
can be obtained from Eq. (18) simply by a shift of
the time origin (by the substitution of t− t0 for t).

To obtain the time dependence of the angular ve-
locity ϕ̇(t) for the limiting motion of the pendulum,
we can express cos(ϕ/2) from Eq. (18) as a function
of time t:

cos(ϕ/2) =
1

cosh(ω0t)
.

After substitution of this value into Eq. (16), we ob-
tain the time dependence of ϕ̇:

ϕ̇(t) = ± 2ω0

cosh(ω0t)
= ± 4ω0

(eω0t + e−ω0t)
. (19)

A graph of ϕ̇(t) is also shown in Figure 6. The
graph of this function has the form of an isolated
impulse. In Eq. (19) the origin t = 0 is chosen to be
the instant at which the pendulum passes through the
equilibrium position with the angular velocity ϕ̇ =
±2ω0. This moment corresponds to the peak value
of the impulse. For time t = ±T0/2 on either side of
the peak Eq. (19) gives the angular velocity of only
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±0.17 ω0. Therefore the period T0 = 2π/ω0 of small
oscillations can be assumed to be an estimate for the
duration of the impulse on the velocity graph, that
is, for the time needed for the pendulum to execute
almost all of its circular path, from the vicinity of the
inverted position through the lowest point and back.

Using the analytical expression for the time de-
pendence of the angular velocity given by Eq. (19),
we can calculate the time interval during which the
pendulum moves from one horizontal position to the
other, passing through the lower equilibrium position.
During this time the kinetic energy of the pendulum
is greater than its potential energy. For the time de-
pendence of the kinetic energy during the limiting
motion we obtain:

Ekin =
1
2
Jϕ̇2 =

8Jω2
0

(eω0t + e−ω0t)2
. (20)

To find the instants that correspond to horizontal
positions of the pendulum we equate Ekin(t) from
Eq. (20) to the potential energy of the pendulum in
the horizontal position mga = Jω2

0 . Thus for the
interval τ between these instants we obtain the value
0.28 T0.

The wings of the profile decrease exponentially as
t → ±∞. Actually, for large positive values of t,
we may neglect the second term exp(−ω0t) in the
denominator of Eq. (19), and we find that:

ϕ̇(t) ≈ ±4ω0e
−ω0t. (21)

Thus, in the limiting motion of the representative
point along the separatrix, when the total energy E
is exactly equal to the height 2mga of the potential
barrier, the speed of the pendulum decreases steadily
as it nears the inverted position of unstable equilib-
rium. The pendulum approaches the inverted po-
sition asymptotically, requiring an infinite time to
reach it. The motion is not periodic.

The mathematical relationships associated with
the limiting motion of a pendulum along the separa-
trix play an important role in the theory of solitons
(see [6]).

7 Period of Large Oscillations
and Revolutions

If the energy differs from the critical value 2mga, the
motion of the pendulum in the absence of friction
(swinging at E < 2mga or rotation at E > 2mga) is
periodic. The period T of such a motion the greater
the closer the energy E to 2mga. Figure 7 gives the
dependence of the period on the total energy T (E)
obtained with the help of the simulation program [1].
(The energy is measured in units of the maximal po-
tential energy 2mga.)

Figure 7: The period versus total energy.

The initial almost linear growth of the period with
E corresponds to the approximate formula, Eq. (11).
Indeed, Eq. (11) predicts a linear dependence of T on
ϕ2

m, and for small amplitudes ϕm the energy is pro-
portional to the square of the amplitude. When the
energy approaches the value 2mga, the period grows
infinitely. Greater values of the energy correspond to
the rotating pendulum. The period of rotation de-
creases with the energy. The asymptotic behavior of
the period at E À 2mga can be found as follows.

When the total energy E of the pendulum is con-
siderably greater than the maximal value 2mga of its
potential energy, we can assume all the energy of the
pendulum to be the kinetic energy of its rotation. In
other words, we can neglect the influence of the grav-
itational field on the rotation and consider this rota-
tion to be uniform. The angular velocity of this ro-
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tation is approximately equal to the angular velocity
Ω received by the pendulum at the initial excitation.
The period T of rotation is inversely proportional to
the angular velocity of rotation: T = 2π/Ω. So for
E = JΩ2/2 À 2mga the asymptotic dependence of
the period on the initial angular velocity is the inverse
proportion: T ∝ 1/Ω.

To find the dependence T (Ω) more precisely, we
need to take into account the variations in the angular
velocity caused by gravitation. The angular velocity
of the pendulum oscillates between the maximal value
Ω in the lower position and the minimal value Ωmin

in the upper position. The latter can be found from
the conservation of energy (see [7] for details):

Ωmin =
√

Ω2 − 4ω2
0 ≈ Ω

(
1− 2

ω2
0

Ω2

)
.

For rapid rotation we can assume these oscillations
of the angular velocity to be almost sinusoidal. Then
the average angular velocity of rotation is approxi-
mately the half-sum of its maximal and minimal val-
ues:

Ωav ≈ (Ω + Ωmin)/2 = Ω(1− ω2
0/Ω2),

and the period of rotation is:

T (Ω) =
2π

Ωav
≈ T0

ω0

Ω

(
1 +

ω2
0

Ω2

)
.

However, the most interesting peculiarities are re-
vealed if we investigate the dependence of the period
on energy in the vicinity of Emax = 2mga.

Measuring the period of oscillations successively
for the amplitudes 179.900◦, 179.990◦, and 179.999◦

(each with an initial angular velocity of zero), we see
that duration of the impulses on the graph of the
angular velocity very nearly remains the same, but
the intervals between them become longer as the am-
plitude approaches 180◦: Experimental values of the
period T of such extraordinary oscillations are respec-
tively 5.5 T0, 6.8 T0, and 8.3 T0.

It is interesting to compare the motions for two val-
ues of the total energy E which differ slightly from
Emax on either side by the same amount, i.e., for
E/Emax = 0.9999 and E/Emax = 1.0001. In the
phase plane, these motions occur very near to the

separatrix, the first one inside and the latter outside
of the separatrix. The inner closed curve corresponds
to oscillations with the amplitude 178.9◦. Measuring
the periods of these motions, we obtain the values
3.814 T0 and 1.907 T0 respectively. That is, the mea-
sured period of these oscillations is exactly twice the
period of rotation, whose phase curve adjoins the sep-
aratrix from the outside.

The graphs of ϕ(t) and ϕ̇(t) for oscillations and
revolutions of the pendulum whose energy equals
Emax ∓∆E are shown respectively in the upper and
lower parts of Figure 8.

Figure 8: The graphs of ϕ(t) and ϕ̇(t) for the pendu-
lum excited at ϕ = 0 by imparting the initial angular
velocity of ϕ̇ = 2ω0(1∓ 10−6).

Next we suggest a theoretical approach which can
be used to calculate the period of oscillations and
revolutions with E ≈ 2mga.

From the simulation experiments we can conclude
that during the semicircular path, from the equilib-
rium position up to the extreme deflection or to the
inverted position, both of the motions shown in Fig-
ure 8 almost coincide with the limiting motion (Fig-
ure 6). These motions differ from the limiting motion
appreciably only in the immediate vicinity of the ex-
treme point or near the inverted position: In the first
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case the pendulum stops at this extreme point and
then begins to move backwards, while in the limiting
motion the pendulum continues moving for an unlim-
ited time towards the inverted position; in the second
case the pendulum reaches the inverted position dur-
ing a finite time.

For the oscillatory motion under consideration, the
representative point in the phase plane generates a
closed path during one cycle, passing along both
branches of the separatrix. In this motion the pen-
dulum goes twice around almost the whole circle,
covering it in both directions. On the other hand,
executing rotation, the pendulum makes one circle
during a cycle of revolutions, and the representa-
tive point passes along one branch of the separatrix
(upper or lower, depending on the direction of rota-
tion). To explain why the period of these oscillations
is twice the period of corresponding revolutions, we
must show that the motion of the pendulum with en-
ergy E = 2mga−∆E from ϕ = 0 up to the extreme
point requires the same time as the motion with the
energy E = 2mga+∆E from ϕ = 0 up to the inverted
vertical position.

Almost all of both motions occurs very nearly along
the same path in the phase plane, namely, along the
separatrix from the initial point ϕ = 0, ϕ̇ ≈ 2ω0 up to
some angle ϕ0 whose value is close to π. To calculate
the time interval required for this part of the motion,
we can assume that the motion (in both cases) occurs
exactly along the separatrix, and take advantage of
the corresponding analytical solution, expressed by
Eq. (18).

Assuming ϕ(t) in Eq. (18) to be equal to ϕ0, we can
find the time t0 during which the pendulum moves
from the equilibrium position ϕ = 0 up to the angle
ϕ0 (for both cases):

ω0t0 = − ln tan
π − ϕ0

4
= − ln tan

α0

4
, (22)

where we have introduced the notation α0 = π − ϕ0

for the angle that the rod of the pendulum at ϕ = ϕ0

forms with the upward vertical line. When ϕ0 is close
to π, the angle α0 is small, so that in Eq. (22) we can
assume tan(α0/4) ≈ α0/4, and ω0t0 ≈ ln(4/α0).

Later we shall consider in detail the subsequent

part of motion which occurs from this arbitrarily cho-
sen angle ϕ = ϕ0 towards the inverted position, and
prove that the time t1 required for the pendulum with
the energy 2mga + ∆E (rotational motion) to reach
the inverted position ϕ = π equals the time t2 dur-
ing which the pendulum with the energy 2mga−∆E
(oscillatory motion) moves from ϕ0 up to its extreme
deflection ϕm, where the angular velocity becomes
zero, and the pendulum begins to move backwards.

When considering the motion of the pendulum in
the vicinity of the inverted position, we find it con-
venient to define its position (instead of the angle
ϕ) by the angle α of deflection from this position of
unstable equilibrium. This angle equals π − ϕ, and
the angular velocity α̇ equals −ϕ̇. The potential en-
ergy of the pendulum (measured relative to the lower
equilibrium position) depends on α in the following
way:

Epot(α) = mga(1 + cos α) ≈ 2mga(1− 1
4
α2). (23)

The latter expression is valid only for relatively small
values of α, when the pendulum moves near the in-
verted position. Phase trajectories of motion with en-
ergies E = 2mga±∆E near the saddle point ϕ = π,
ϕ̇ = 0 (in the new variables α = 0, α̇ = 0) can be
found from the conservation of energy using the ap-
proximate expression (23) for the potential energy:

1
2
Jα̇2 +

1
2
mgaα2 = ±∆E, or

α̇2

ω2
0

− α2 = ±4ε. (24)

Here we use the notation ε = ∆E/Emax =
∆E/(2mga) for the small (ε ¿ 1) dimensionless
quantity characterizing the fractional deviation of en-
ergy E from its value Emax for the separatrix. It fol-
lows from Eq. (24) that phase trajectories near the
saddle point are hyperbolas whose asymptotas are
the two branches of the separatrix that meet at the
saddle point. Part of the phase portrait near the sad-
dle point is shown in Figure 9. The curve 1 for the
energy E = 2mga + ∆E corresponds to the rotation
of the pendulum. It intersects the ordinate axis when
the pendulum passes through the inverted position.
The curve 2 for the energy E = 2mga−∆E describes
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the oscillatory motion. It intersects the abscissa axis
at the distance αm = π−ϕm from the origin. This is
the point of extreme deflection in the oscillations.

Figure 9: Phase curves near the saddle point.

For α ¿ 1 the torque of the gravitational force
is approximately proportional to the angle α, but in
contrast to the case of stable equilibrium, the torque
N = −dEpot(α)/dα = mgaα tends to move the pen-
dulum farther from the position α = 0 of unstable
equilibrium. Substituting the torque N in the law of
rotation of a solid, we find the differential equation
of the pendulum valid for its motion near the point
α = 0:

J α̈ = mga α, or α̈− ω2
0α = 0. (25)

The general solution of this linear equation can
be represented as a superposition of two exponential
functions of time t:

α(t) = C1e
ω0t + C2e

−ω0t. (26)

Next we consider separately the two cases of mo-
tion with the energies E = Emax ±∆E.

1. Rotational motion (E = Emax + ∆E) along
the curve 1 from α0 up to the intersection with the
ordinate axis. Let t = 0 be the moment of crossing
the inverted vertical position: α(0) = 0. Hence in
Eq. (26) C2 = −C1. Then from Eq. (24) α̇(0) =
2
√

εω0, and C1 =
√

ε. To determine duration t1 of
the motion, we assume in Eq. (26) α(t1) = α0:

α0 =
√

ε(eω0t1 − e−ω0t1) ≈ √
εeω0t1 .

(We can choose here an arbitrary value α0, although
a small one, to be large compared to

√
ε, so that

the condition e−ω0t1 ¿ eω0t1 is fulfilled). Therefore
ω0t1 = ln(α0/

√
ε).

2. Oscillatory motion (E = Emax − ∆E) along
the curve 2 from α0 up to the extreme point αm. Let
t = 0 be the moment of maximal deflection, when the
phase curve intersects the abscissa axis: α̇(0) = 0.
Hence in Eq. (26) C2 = C1. Then from Eq. (24)
α(0) = αm = 2

√
ε, and C1 =

√
ε. To determine

duration t2 of this motion, we assume in Eq. (26)
α(t2) = α0. Hence

α0 =
√

ε(eω0t2 + e−ω0t2) ≈ √
εeω0t2 ,

and we find ω0t2 = ln(α0/
√

ε).
We see that t2 = t1 if ε = ∆E/Emax is the same

in both cases. Therefore the period of oscillations is
twice the period of rotation for the values of energy
which differ from the critical value 2mga on both
sides by the same small amount ∆E. Indeed, we
can assume with great precision that the motion from
ϕ = 0 up to ϕ0 = π − α0 lasts the same time t0
given by Eq. (22), since these parts of both phase
trajectories very nearly coincide with the separatrix.
In the case of rotation, the remaining motion from ϕ0

up to the inverted position also lasts the same time
as, in the case of oscillations, does the motion from
ϕ0 up to the utmost deflection ϕm, since t1 = t2.

The period of rotation Trot is twice the duration
t0 + t1 of motion from the equilibrium position ϕ = 0
up to the ϕ = π. Using the above value for t1 and
Eq. (22) for t0, we find:

Trot = 2(t0 + t1) =
2
ω0

ln
4√
ε

=
1
π

T0 ln
4√
ε
.

We note that an arbitrarily chosen angle α0 (how-
ever,

√
ε ¿ α0 ¿ 1), which delimits the two stages

of motion (along the separatrix, and near the saddle
point in the phase plane), falls out of the final formula
for the period (when we add t0 and t1). The period
of revolutions tends to infinity when ε → 0, that is,
when the energy tends to its critical value 2mga. For
ε = 0.0001 (for E = 1.0001Emax) the above formula
gives the value Trot = 1.907 T0, which coincides with
the cited experimental result.
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The period of oscillations T is four times greater
than the duration t0 + t2 of motion from ϕ = 0 up to
the extreme point ϕm:

T = 4(t0 + t2) =
4
ω0

ln
4√
ε

=
2
π

T0 ln
8

αm
.

For αm ¿ 1 (ϕm ≈ π) this formula agrees well with
the experimental results: it yields T = 5.37 T0 for
ϕm = 179.900◦, T = 6.83 T0 for ϕm = 179.990◦, and
T = 8.30 T0 for ϕm = 179.999◦. From the obtained
expressions we see how both the period of oscillations
T and the period of rotation Trot tend to infinity as
the total energy approaches Emax = 2mga.

8 The Mean Energies

In the motion under consideration (swinging or rota-
tion with E ≈ 2mga) both potential and kinetic en-
ergies oscillate between zero and the same maximal
value, which is equal to the total energy E ≈ 2mga.
However, during almost all the period the pendulum
moves very slowly in the vicinity of the inverted po-
sition, and during this time its potential energy has
almost the maximal value 2mga = 2Jω2

0 . Only for a
short time, when the pendulum passes rapidly along
the circle and through the bottom of the potential
well, is the potential energy of the pendulum con-
verted into kinetic energy. Hence, on the average,
the potential energy predominates.

We can estimate the ratio of the averaged over a
period values of the potential and kinetic energies if
we take into account that most of the time the angu-
lar velocity of the pendulum is nearly zero, and for a
brief time of motion the time dependence of ϕ(t) is
very nearly the same as it is for the limiting motion
along the separatrix. Therefore we can assume that
during an impulse the kinetic energy depends on time
in the same way it does in the limiting motion. This
assumption allows us to extend the limits of integra-
tion to ±∞. Since two sharp impulses of the angular
velocity (and of the kinetic energy) occur during the
period T of oscillations, we can write:

〈Ekin〉 =
J

T

∫ ∞

−∞
ϕ̇2(t)dt =

J

T

∫ π

−π

ϕ̇(ϕ)dϕ.

The integration with respect to time is replaced here
with an integration over the angle. The mean kinetic
energy 〈Ekin〉 is proportional to the area S of the
phase plane bounded by the separatrix: 2〈Ekin〉 =
JS/T . We can substitute for ϕ̇(ϕ) its expression from
the equation of the separatrix, Eq. (16):

〈Ekin〉 =
J

T
2ω0

∫ π

−π

cos
ϕ

2
dϕ =

4
π

Jω2
0

T0

T
.

Taking into account that the total energy E for
this motion approximately equals 2mga = 2Jω2

0 , and
Epot = E − Ekin, we find:

〈Epot〉
〈Ekin〉 =

2Jω2
0

〈Ekin〉 − 1 =
π

2
T

T0
− 1.

For ϕm = 179.99◦ the period T equals 6.83 T0, and
so the ratio of mean values of potential and kinetic
energies is 9.7 (compare with the case of small oscil-
lations for which these mean values are equal).

9 The Influence of Friction

In the presence of weak friction inevitable in any
real system, the phase portrait of the pendulum
changes qualitatively: The phase curves have a dif-
ferent topology (compare Figures 10 and 4). A phase
trajectory representing the counterclockwise rotation
of the pendulum sinks lower and lower toward the
separatrix with each revolution. The phase curve
which passed formerly along the upper branch of the
separatrix does not reach now the saddle point (π, 0).
Instead it begins to wind around the origin, gradually
approaching it. Similarly, the lower branch crosses
the abscissa axis ϕ̇ = 0 to the right of the saddle
point (−π, 0), and also spirals towards the origin.

The closed phase trajectories corresponding to os-
cillations of a conservative system are transformed by
friction into shrinking spirals which wind around a fo-
cus located at the origin of the phase plane. Near the
focus the size of gradually shrinking loops diminishes
in a geometric progression. This focus represents a
state of rest in the equilibrium position, and is an
attractor of the phase trajectories. That is, all phase
trajectories of the damped pendulum spiral in toward
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Figure 10: Phase portrait with friction.

Figure 11: Phase portrait of a damped (a) and of an
overdamped (γ > ω0, b) pendulum.

the focus, forming an infinite number of loops, as in
Figure 11, a.

When friction is relatively strong (γ > ω0), the mo-
tion is non-oscillatory, and the attractor of the phase
trajectories, instead of a focus, becomes a node: all
phase trajectories approach this node directly, with-
out spiraling. The phase portrait of an overdamped
pendulum (γ = 1.05 ω0) is shown in Figure 11,b.

When friction is weak, we can make some theoret-
ical predictions for the motions whose phase trajec-
tories pass close to the separatrix. For example, we
can evaluate the minimal value of the initial veloc-
ity which the pendulum must be given in the lower
(or some other) initial position in order to reach the
inverted position, assuming that the motion occurs
along the separatrix, and consequently that the de-
pendence of the angular velocity on the angle of de-
flection is approximately given by the equation of the

separatrix, Eq. (16).
The frictional torque is proportional to the angular

velocity: Nfr = −2γJϕ̇. Substituting the angular
velocity from Eq. (16), we find

Nfr = ∓4γJω0 cos
ϕ

2
= ∓2mga

Q
cos

ϕ

2
.

Hence the work Wfr of the frictional force during the
motion from an initial point ϕ0 to the final inverted
position ϕ = ±π is:

Wfr =
∫ ±π

ϕ0

Nfrdϕ = −4
mga

Q

(
1∓ sin

ϕ0

2

)
. (27)

The necessary value of the initial angular velocity
Ω can be found with the help of the conservation of
energy, in which the work Wfr of the frictional force
is taken into account:

1
2
JΩ2 + mga(1− cosϕ0) + Wfr = 2mga.

Substituting Wfr from Eq. (27), we obtain the fol-
lowing expression for Ω:

Ω2 = 2ω0

[
1 + cosϕ0 +

4
Q

(
1∓ sin

ϕ0

2

)]
. (28)

For ϕ0 6= 0 the sign in Eq. (28) depends on direc-
tion of the initial angular velocity. We must take
the upper sign if the pendulum moves directly to
the inverted position, and the lower sign if it passes
first through the lower equilibrium position. In other
words, at ϕ0 > 0 we must take the upper sign for
positive values of Ω, and the lower sign otherwise. If
the pendulum is excited from the lower equilibrium
position (ϕ0 = 0), Eq. (28) yields the initial velocity
to be

Ω = ±2ω0

√
1 + 2/Q ≈ ±2ω0(1 + 1/Q).

The exact value of Ω is slightly greater since the
motion towards the inverted position occurs in the
phase plane close to the separatrix but always outside
it, that is, with the angular velocity of slightly greater
magnitude. Consequently, the work Wfr of the fric-
tional force during this motion is a little larger than
the calculated value. For example, for Q = 20 the
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above estimate yields Ω = ±2.1ω0, while the more
precise value of Ω determined experimentally by trial
and error is ±2.10096 ω0.

Figure 12 shows the graphs of ϕ(t) and ϕ̇(t) and the
phase trajectory for a similar case in which the initial
angular velocity is chosen exactly to let the pendulum
reach the inverted position after a revolution.

Figure 12: Revolution and subsequent oscillation of
the pendulum with friction (Q = 20) excited from the
equilibrium position with an initial angular velocity
of Ω = 2.3347 ω0.

Summary

Free oscillations and revolutions of a rigid pendu-
lum are investigated on the basis of a theoretical ap-
proach, aided by a computerized experimental explo-
ration with the help of the software package “Physics
of Oscillations” [1]. This package offers many inter-
esting examples that illustrate various peculiarities of
this famous physical model in vivid computer simu-
lations, thus allowing us to appreciate the beauty of
oscillatory phenomena.

The programs of the package are flexible enough
and sophisticated in order to use them, say, in stu-
dents’ research projects for exploration of new prop-

erties of the modelled systems. Visualization of mo-
tion simultaneously with plotting the graphs of dif-
ferent variables and phase trajectories makes the sim-
ulation experiments very convincing and comprehen-
sible. These simulations provide a good background
for the study of more complicated nonlinear para-
metric systems like a pendulum whose length is pe-
riodically changed, or a pendulum with the suspen-
sion point driven periodically in the vertical direc-
tion. Such rather simple nonlinear dynamical sys-
tems demonstrate a great variety of modes in their
behaviour. In particular, along with regular steady-
state oscillations and synchronized rotations, these
dissipative systems can exhibit examples of dynami-
cal chaos, characterized by strange attractors in phase
space. The cases of such irregular motions of systems
governed by deterministic laws are distinguished by
an extreme sensitivity to the initial conditions, when
a very small initial difference may cause an enormous
change to the long-term behaviour of the system.
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