
INSTITUTE OF PHYSICS PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 27 (2006) 1071–1081 doi:10.1088/0143-0807/27/5/006

Precession and nutation of a
gyroscope

Eugene Butikov

St Petersburg State University, St Petersburg, Russia

E-mail: butikov@spb.runnet.ru

Received 24 March 2006, in final form 21 April 2006
Published 17 July 2006
Online at stacks.iop.org/EJP/27/1071

Abstract
A simple treatment of the important old problem of the torque-induced rotation
of a spinning symmetrical top is suggested. Our discussion is appropriate for
teaching introductory mechanics and general physics to undergraduate students
and is free from the difficulties of a traditional approach to the problem. The
origin of nutation that accompanies forced precession is explained in detail, with
an accent on its relationship to the torque-free precession of a symmetrical body.
A small simulation program is developed that visualizes the investigated motion
and illustrates its principal features. The program facilitates understanding
about the counterintuitive behaviour of a gyroscope on a qualitative level.

(Some figures in this article are in colour only in the electronic version)

Introduction

A gyroscope is a body of rotation (for example, a massive disc) which is set spinning at a large
angular velocity around its axis of symmetry. First acquaintance with a gyroscope occurs
usually in early childhood, when the child watches the unusual behaviour of a widely known
toy—a spinning top. A toy gyroscope seems to be able to defy gravity. As long as the top is
spinning fast enough, it remains staying steadily (‘sleeping’) on the lower sharp end of the axis
avoiding tipping over or falling down to the ground and preserving the vertical position of the
axis in spite of the high position of its centre of mass—the centre of gravity of a spinning top
can be located far above its supporting pivot. If the axis of a spinning gyroscope is inclined
to the vertical, the axis generates in space a vertical circular cone, so that the angle between
the gyroscope axis and the vertical remains constant during rotation. This kind of motion of a
gyroscope under an external torque is called forced or torque-induced regular precession (see
figure 1). Precession is often complicated by nutation which reveals itself as a fast shivering
of the precessing axis.

The most important practical applications of gyroscopes are met in devices for measuring
the orientation or maintaining the stability of airplanes, spacecraft and submarines—vehicles
in general. Various gyroscopes are used as sensors in inertial guidance systems.
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Figure 1. Steady (regular) precession of the gyroscope under the force of gravity.

This paper is an attempt to develop some clarity regarding the old problem of precession
and especially nutation of gyroscopes on the level appropriate for undergraduate students.
Most textbooks in introductory mechanics (see, for example, [1, 2]) explain the mysterious
behaviour of a spinning gyroscope using Lagrange equations and severe mathematics, which
is not very helpful for developing physical intuition. Those textbooks that try to avoid such
difficulties omit as a rule any discussion or explanation of nutation (see [3, 4]). This may form
an impression that a gyroscope is some wonder that does not obey the fundamental laws of
physics. Other textbooks [5, 6] treat the problem of torque-induced precession of a top on the
basis of Euler equations which are referred to the non-inertial reference frame rotating together
with the body. However, in this problem we are interested first of all how the body moves
with respect to the inertial space. For students, transition to the inertial frame of reference
from a body frame which rotates in a complicated manner may be rather confusing. From a
pedagogical point of view, it seems expedient to find a solution to this problem directly in the
inertial space.

In addition, a small simulation program (Java applet) ‘Forced Precession of a Gyroscope’
[7] (with a commenting text) is developed to visualize and help students grasp and better
understand on a qualitative level a somewhat counterintuitive behaviour of a gyroscope,
including precession under the force of gravity and nutation. The program is available on the
Internet and is executed directly in any web browser with the Java plug-in installed.

Regular precession of the gyroscope

The strange at first sight behaviour of the gyroscope can be explained on the basis of the main
law of rigid body dynamics according to which the time rate dL/dt of change in the angular
momentum L equals the total torque N = �i (ri × Fi) of the external forces exerted on the
body:

dL

dt
= N . (1)

When the gyroscope is set to rotation around its axis of symmetry, vector L of its angular
momentum is also directed along this axis. We denote the orientation of the top axis in space
(from the pivot point towards the centre of mass) by vector n0 of the unit length (see figure 1).
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Both vectors L and n0 can point in the same or in opposite directions depending on the sense
of rotation. Let I0 be the moment of inertia of the top about its axis of symmetry. In particular,
for a disc or circular cylinder manufactured of a homogeneous material I0 = 1

2 mR2, where m
is the mass of the body, R is its radius. When the top is rotating about its axis with an angular
velocity ω0 (positive for counter-clock rotation), the angular momentum can be represented
as L = I0ω0n0.

Being inclined to the vertical, the gyroscope undergoes precession, that is, besides rotation
around its own axis, it turns also around the vertical axis. At fast own rotation this precession
occurs so slowly that with a good accuracy it is possible to neglect the component of the angular
momentum which is caused by precession around the vertical. In other words, even in this case
we can assume that vector L of the total angular momentum is directed approximately along
the axis of the gyroscope, i.e., along the slowly moving vector n0: L ∼= L0 = I0ω0n0. The
term ‘gyroscope’ is usually applied to an axially symmetric body only if this condition of fast
axial rotation is fulfilled. An approximate theory of a gyroscope is based on the assumption
that vector L of the total angular momentum is always directed along the axis of symmetry.
Therefore the behaviour of vector L deduced from equation (1) tells us about the behaviour of
the gyroscope axis.

If a rigid body moves about a fixed point, it is convenient to use this point as the reference
point (the origin) in the definition of angular momentum L and torque N in equation (1). For
a toy top this point is a pivot at which the sharp lower end of the top axis is supported. When
we choose this point, the unknown reaction force (exerted on the gyroscope just at this point)
has zero torque on the right-hand side of (1), and therefore we can investigate the motion of
the top without knowing this force. Hence for a gyroscope whose axis is supported at a point
different from the centre of mass, the external torque N in equation (1) about the pivot point
is provided solely by the force of gravity mg, which in the uniform gravitational field can be
regarded as applied at the centre of mass of the top.

The position vector of the centre of mass relative to the pivot is rc = n0a, where a equals the
distance between the pivot and the centre of mass. If the axis is not perfectly vertical, the torque
of the force of gravity N = rc × F = n0a × mg is directed at a right angle to vector L of the
angular momentum and thus causes it to change direction but not magnitude. At any moment
of time vector N, being directed as the cross product of n0 and g, points perpendicularly to
the gyroscope axis n0 and perpendicularly to g (horizontally). This explains the unexpected
at first sight behaviour of the gyroscope axis: according to (1), the upper end of vector L
moves in the direction of vector N rather than in the direction of force mg itself. During an
infinitesimal time interval dt vector L gets an elementary increment dL = Ndt directed along
N and thus lying in the horizontal plane at a right angle to the gyroscope axis. This means
that vector L and also the axis of the top undergo a regular precession, that is, they both are
uniformly revolving about the vertical line that passes through the pivot.

The angular velocity ωpr of this precession can be found by substituting L ∼= L0 = I0ω0n0

into the left-hand side of (1) and N = n0a × mg into its right-hand side. If the friction is
insignificant, we can consider the angular velocity ω0 of the axial rotation to be constant.
Therefore on the left-hand side of equation (1) we can differentiate only n0 in L ∼= I0ω0n0.
Then equation (1) yields

I0ω0
dn0

dt
= n0a × mg, or

dn0

dt
= ωpr × n0, ωpr = − am

I0ω0
g. (2)

As follows from equation (2), at ω0 > 0 (i.e., when the gyroscope rotates counter-
clockwise about its axis) the vector ωpr of the angular velocity of precession is directed
upward, oppositely to vector g, which means that precession induced by gravity occurs also
counter-clockwise—in the same sense as the axial rotation. And at clockwise axial rotation
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Figure 2. Simulation of the regular precession of the gyroscope. The image shows the circular
trajectory of the upper end of the gyroscope axis and the loopy trajectory of the end point of an
arrow attached firmly to the gyroscope.

of the gyroscope (at ω0 < 0) its precession forced by gravity occurs also clockwise. The
magnitude ωpr of the angular velocity of precession is inversely proportional to the angular
velocity ω0 of the axial rotation and directly proportional to the distance a between the pivot
and the centre of mass. We note that ωpr is independent of the tilt of the axis to the vertical.

The behaviour of the gyroscope axis described by (2) is called regular or uniform
precession. This is a forced, torque-induced precession because the gyroscope undergoes
it under the force of gravity. All points of the gyroscope that lie on its axis of symmetry move
uniformly along circular paths whose centres are located on the vertical line passing through
the supporting pivot. Figure 2 shows the applet window of the simulation computer program
‘Forced Precession of a Gyroscope’ [7] with an illustration of regular precession.

The program shows the circular path along which the upper end of the gyroscope axis
moves (the red circle in figure 2), and also a loopy trajectory of some fixed point of the top,
which is displaced from the axis of symmetry. The position of this point is indicated by an
arrow which originates at the centre of mass and ends beyond the bounding surface of the
top. This is done deliberately in order to show the peculiarities of these trajectories on a
larger scale. We can imagine this arrow as being attached firmly to the body of the gyroscope
(plunged into it up to the centre of mass). For convenience, the distance from the pivot to
the end point of the arrow is chosen to be equal to the length of the top’s axis. Therefore
both trajectories of the upper end of the gyroscope axis and of the arrow spike lie on the same
sphere whose centre is located at the pivot.

We have considered above the torque-induced regular precession of the gyroscope on the
basis of an approximate theory in which the total angular momentum L of the gyroscope is
assumed to be always directed along its axis of symmetry. However, the most remarkable
feature of regular precession is that this kind of motion is actually one of the possible solutions
to the exact dynamical equation of motion (equation (1)). Next we will show this.

In the exact theory of the gyroscope we must take into account that the total angular
momentum L is produced not only by rotation about the axis of symmetry. Besides this
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Figure 3. Vector L of the total angular momentum at regular precession of the gyroscope.

own angular momentum L0 = I0ω0n0, which constitutes the major part of L, some additional
investment in L is given by (slow) rotation about other axes. In the case of regular precession
this additional angular momentum is produced by the revolution of the top about the vertical
line with (small) angular velocity ωpr. Let us denote by Lpr the corresponding vector, which is
proportional to ωpr and coincides with ωpr in direction, as shown in figure 3.

When we take Lpr into account, we realize that vector L of the total angular momentum
is not directed exactly along the axis of the top (see figure 3). Nevertheless, the horizontal
components of vectors L and L0 are equal when the gyroscope undergoes a regular precession.
The end points of vectors L and L0 move synchronously along equal circles which are shown
in figure 3 by dashed lines. This means that these end points of L and L0 have equal velocities.
In other words, the time derivatives of L and L0 are equal: dL/dt = dL0/dt. Both vectors
L and L0 undergo precession about the vertical with the same angular velocity ωpr, and their
variation with time is described by similar equations:

dL0

dt
= ωpr × L0,

dL

dt
= ωpr × L. (3)

The second of these equations testifies that regular precession with an angular velocity
ωpr is actually a solution to the exact dynamical equation (1). However, this is not the only
possible solution to the equation of motion (1) under the torque of the force of gravity. The
regular precession of a gyroscope occurs only if the initial conditions are quite definite: in
order to observe this regular behaviour, we should make the gyroscope spin around its axis
and set to this axis a rotation about the vertical line with a certain angular velocity, namely
the velocity which is characteristic of the subsequent precession. Only this initial angular
velocity of the axis will provide the regular precession. In this sense we can say that the force
of gravity that tends to tip over the gyroscope essentially only maintains, but not causes the
precession—actually the regular precession is caused by these specific initial conditions.

We can compare the role which the force of gravity plays in the regular precession of a
gyroscope with the role of string tension when we make a small body twirling on the end of
the string. The force of string tension pulls the attached body towards the centre of the circle,
but the body moves all the time under this force perpendicularly to the force. The force of
string tension only maintains, but not causes the motion of the body. To produce this motion,
we must impart to the body an initial velocity in the perpendicular direction. With this analogy
in mind, we may consider the gyroscope behaviour at a regular precession not as strange and
surprising as it may seem at first sight.
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Figure 4. Torque-free precession (nutation) of the gyroscope about the total angular momentum L
in the absence of gravity.

Nutation of the gyroscope

In the general case, i.e., for arbitrary initial conditions, the motion of a gyroscope is a
superposition of torque-induced regular precession and torque-free nutation. The nutation
(etymologically a ‘nodding’) of a fast-spinning gyroscope reveals itself as (small) vibration
and shivering of the precessing axis. Nutation is caused by a possible small deviation of the
vector of own angular momentum from the axis of symmetry. This deviation is absent only
for carefully chosen specific initial conditions.

In order to understand what will be the motion of the gyroscope at arbitrary initial
conditions which do not provide regular precession, we consider the following auxiliary
problem. Let us imagine how the gyroscope executing regular precession under gravity
torque will move if at some moment of time the force of gravity would suddenly vanish. This
situation can be realized in practice by letting the whole apparatus (the gyroscope together with
its supporting device) fall freely in the gravitational field, as in Einstein’s thought experiments
with a freely falling elevator cabin. When the cabin starts to fall, the gyroscope instantly
becomes weightless.

For a possible explanation of the further motion of the gyroscope, we should turn to the
problem of the torque-free inertial rotation of a symmetrical top. This problem is discussed,
in particular, in the preceding paper [8] and illustrated by a simulation computer program
‘Free rotation of an axially symmetrical body’ [9]. The torque-free motion of the top can be
represented as a superposition of two rotations: spinning about the axis of symmetry with the
angular velocity ω0 and a simultaneous uniform rotation of this axis about the direction of the
angular momentum L. The body axis moves about vector L in a circular cone. The angular
velocity of the torque-free precession is directed along and proportional in magnitude to the
total angular momentum L, and inversely proportional to the transverse moment of inertia I⊥
(moment of inertia about an axis, perpendicular to the axis of symmetry): Ω = L/I⊥. Being
applied to a gyroscope, this free precession is usually called nutation.

Returning to the precessing gyroscope which suddenly occurs in weightlessness, we note
that at this moment its vector L of the total angular momentum does not point along the axis
of symmetry. This is clearly seen in figure 3. At the time moment when the force of gravity
is suddenly ‘switched off,’ the torque-induced precession of vector L immediately stops, but
the gyroscope axis continues its precessing motion. The velocity of this motion should be
regarded as the initial velocity for the subsequent torque-free motion of the gyroscope. A
picture of this motion is shown in figure 4. This is a nutation in which the gyroscope axis
(vector n0) describes a circular cone about vector L of the conserved total angular momentum
with an angular velocity Ω = L/I⊥. Thus, if we forget for a while about the force of gravity,
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the motion of the gyroscope would be a nutation, which is simply another name for an inertial
(torque-free) precession.

The existence of nutation explains one more peculiarity in gyroscope behaviour which
may seem to be paradoxical. According to equation (1), the angular momentum L of a
gyroscope can change with time only under external forces whose torque N has a non-zero
value. If the external forces suddenly vanish as in the example discussed above, the time
variation of the angular momentum L stops just at the same moment. One may think that
this implies the immediate termination of the axis’ motion—the gyroscope axis should stop
at once. The centre of mass which during the precession was moving in a circle should also
stop immediately together with the axis. Can this behaviour of the gyroscope be in agreement
with the law of inertia?

Such a contradiction would actually exist if the described absence of inertia referred to
the motion of the gyroscope axis rather than of vector L. The angular momentum L actually
exhibits no inertia and, as follows from equation (1), stops to change immediately if the external
torque vanishes. The fake conclusion regarding the absence of inertia in the behaviour of the
axis is imposed by the approximate theory of a gyroscope in which vector L of the angular
momentum is supposed to be directed always along the gyroscope axis. In reality vector L
of the total angular momentum deviates during a torque-induced precession from the axis of
the gyroscope by some angle, and if the external force vanishes, nutation starts immediately:
the axis describes a cone about the final direction of L which is preserved further on. The
velocity of the centre of mass at the initial moment of nutation is the same as during the
preceding forced precession. Therefore the contradiction with the law of inertia disappears
when nutation is taken into account.

Forced precession accompanied by a nutation

Now we are ready to investigate the problem of spinning gyroscope behaviour under
gravitational torque at initial conditions which do not provide regular precession from the
very beginning. The previous discussion brings us to a conclusion that in the general case
gyroscope motion is a superposition of torque-induced precession and free nutation.

Next we treat for definite the most typical situation: first we set the tilted gyroscope to a
fast spinning about its axis, supporting simultaneously the upper end of its axis against gravity.
To do this, we exert on the axel an additional upward force. The torque of this force about the
pivot compensates for the torque of the force of gravity. If we release the upper end of the
axel before setting the gyroscope to spin, the force of gravity would simply tip it over, turning
down in the vertical plane around the pivot with acceleration. But what will be the motion of
the tilted gyroscope if we release it only after setting it into a fast spinning?

Obviously, for these initial conditions vector L of the total angular momentum is directed
initially along the axis. As soon as we release the axis, the torque of gravity appears, and
under this torque vector L, according to (1), starts to change. Its variation occurs exactly in
the same way as during the regular precession. We emphasize that this precession of vector L
starts with a finite angular velocity ωpr immediately after we release the axis, but the axis itself
and the centre of mass of the gyroscope are still immovable, that is, they have zero velocity at
the initial time moment. Using these initial conditions, next we try to represent the subsequent
motion of the gyroscope as a superposition of torque-induced precession and nutation.

The involvement of the gyroscope in torque-induced precession implies that vector L of
the total angular momentum has a vertical component Lpr due to the revolution of the top
about the vertical line with an angular velocity ωpr. Let us single out Lpr from the total angular
momentum L, i.e., represent L as the sum Lpr + L1 (see figure 5(a)). The remaining part L1
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Figure 5. Superimposition of nutation about the direction of L1 onto the forced precession.

can be considered as the contribution of spin (own rotation of the top) into the total angular
momentum L.

We conclude from figure 5(a) that the angular momentum L1 associated with this spinning
is not directed along the gyroscope axis: vector L1 deviates from the vertical through a greater
angle than the axis. Let us forget for a while about the torque-induced precession of the
top and concentrate on its spinning. The deviation of vector L1 from the axis implies that
simultaneously with the slow forced precession the gyroscope undergoes fast nutation, i.e., the
axis describes a circular cone (with a small semi-angle) with an angular velocity Ω = L1/I⊥
about the slowly precessing vector L1. Superposition of these two motions can provide the
zero velocity of the axis and of the centre of mass for the initial moment, as required by the
initial conditions. This requirement of initial velocity zero for the axis fulfils only if vector L1

is deviated from the gyroscope axis (from vector n0) through a definite angle which depends
on the tilt of the axis and on the ratio of the angular velocities of nutation and the forced
precession. This angle between L1 and n0 determines the semi-angle of the nutation cone.

For a fast-spinning gyroscope L1 ≈ I0ω0, whence Ω = L1/I⊥ ≈ (I0/I⊥)ω0, that is, the
angular speed Ω of nutation is of the same order of magnitude as the angular speed ω0 of spin
(provided the longitudinal and transverse moments of inertia do not differ considerably).

Thus, the axis of the top (vector n0 in figure 5), being released with zero velocity, undergoes
simultaneously two rather simple motions: along the vertical cone due to the torque-induced
steady (uniform) precession (figure 5(a)) and along a small cone of nutation about vector L1

of the angular momentum related to own rotation (figure 5(b)). The upper end point of the
axis moves due to precession along a horizontal circle shown by a dashed line in figure 5(a);
due to nutation, along the small circle whose centre lies on L1, as shown in figure 5(b). Both
these motions start at the moment of time at which the axis of the spinning top is released—
before this moment the top was simply spinning about its axis. Addition of these two motions
generates for the end of the axis a trajectory that reminds us of a cycloid—the curve traced
by a point on the rim of a wheel rolling without slipping. The simulation program [7] allows
us to see details of this three-dimensional curve (see figure 6) traced by the axis end on the
surface of the sphere centred at the pivot. The red horizontal circle is the trajectory traced by
the precessing vector L1.

We note that firstly, after we release the axis, it actually starts to fall down under the
influence of gravity, in accordance with our intuition, and the tilt increases. But as the top falls
and gains speed, the trajectory of its end deviates more and more from the vertical. Soon the
velocity of the axis becomes horizontal, just as this velocity is directed at regular precession,
but its magnitude is greater than is needed for regular precession. This makes the axis move
up. When the axis reaches the initial height, its velocity turns to zero. Then all the motion
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Figure 6. Simulation of the precession induced by the force of gravity. This precession occurring
after the axis of a spinning top is released with initial velocity zero is accompanied by nutation.

repeats. But now we realize that this strange at first sight behaviour of the axis is explained
by addition of two motions—fast nutation about vector L1 due to the deviation of L1 from the
axis of symmetry, and simultaneous torque-induced slow precession of this vector about the
vertical.

For different initial conditions the superposition of precession and nutation can produce
for the upper end of the axis, instead of the cycloid-like, wavy (sine-like) or loopy trajectories.
A wavy trajectory fully straightens and transforms into a circle (see figure 2) only if the initial
velocity of the axis is exactly equal to the velocity characteristic of regular precession.

When the cone of nutation is narrow, torque-induced precession is called pseudo-regular.
For fast-spinning gyroscopes used in technical applications, pseudo-regular precession is
almost indistinguishable from the regular. In these cases nutation reveals itself as hardly
noticeable very fast shivering of the gyroscope axis. Moreover, this fast nutation damps
out rapidly by virtue of friction, and pseudo-regular precession transforms into a regular
precession.

The simulation program allows us to observe the damping out of nutation due to friction.
Figure 7 shows how the ‘beaks’ of the axis trajectory smooth over and the curve tends
gradually to the circle corresponding to the steady forced precession. This circle (shown
in figure 7 by the red line) is generated by the end point of vector L1. After nutation
fades out completely, the axis assumes the direction of vector L1 (of the angular momentum
due to spin).

Figure 8 gives an impression about the trajectory traced by some point displaced from
the axis of the gyroscope during the transition of pseudo-regular precession to steady regular
precession. The looped curve is generated by the spike of an arrow fixed to the gyroscope
(plunged into its body) and making an angle of 20◦ with its axis. This curve and the
trajectory of the end point of the axis both lie on the same spherical surface whose centre
is located at the pivot. When the gyroscope undergoes a regular precession, all the loops of
this curve are equal (see figure 2). If the precession is accompanied by nutation, the axis
wobbles about a middle position corresponding to the cone of steady precession. Due to this
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Figure 7. Damping out of nutation due to friction, and smoothing of the axis trajectory during
transition to steady precession.

Figure 8. Trajectories traced by the axis and by some point displaced from the axis of the gyroscope
during the transition of pseudo-regular precession to steady regular precession.

wobbling of the axis, the trajectory of the arrow spike is more complicated—its loops are
no more equal.

Concluding remarks

In this paper we have reconsidered an important old problem of the torque-induced rotation
of a spinning symmetrical top. The origin of nutation that accompanies forced precession
is explained in detail, with an accent on its relationship to the torque-free precession of



Precession and nutation of a gyroscope 1081

a symmetrical body. Our treatment is appropriate for teaching introductory mechanics and
general physics to undergraduate students. The approach suggested is free from the difficulties
inherent in a traditional treatment of the problem. A simulation program (Java-applet) [7]
visualizes the investigated motion and is intended to help students in developing physical
intuition about the phenomenon.
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