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Abstract
Common misconceptions about tides encountered in the literature are briefly discussed.

A physically transparent simple but rigorous derivation of tide-generating forces is sug-

gested, followed by a dynamical treatment of the tidal wave in a simplified model of the

ocean as a water shell of equal depth wholly covering the globe. Novelty of our approach

consists in representing tide-generating forces as two quadrupole systems of oscillat-

ing forces with axes of symmetry making 45
◦
angle with one another. The dynamical

response of the ocean to these time-dependent forces is found as steady-state forced

oscillations in a linear system. The treatment is appropriate for a wide readership, includ-

ing non-specialists and enthusiasts interested in the phenomenon. A set of simulations

is developed to help understanding the phenomenon of tides, which is of great general

interest due to its cosmic nature.
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1. COMMON MISCONCEPTIONS ABOUT THE TIDES
Numerous treatments of tides encountered in some textbooks and web sites are either

plainly wrong or at least misleading. The authors who write about tides usually don’t get into

the physics theory much. Comprehensive discussions of typical textbook and media mistakes

are presented on the web by Donald Simanek [1]. Various misleading representations of tides

in press and media are discussed by Mikolaj Sawicki [2]. Some of the misconceptions are the

result of their author’s misunderstandings. However, the most evident common reason of

misconceptions in textbooks on oceanography, such as Thurman [3] or Ross [4], is probably

related with inaccurate or misused terminology in describing the origin of the tide-generating

forces.

Much confusion regarding the origin of tides arises from the incorrect choice of the refer-

ence frame. When a non-inertial reference frame is used for the explanation, the non-uniform

gravitational pull of the celestial bodies that are responsible for the tides is slightly out of bal-

ance with the uniform pseudo force of inertia caused by the free-fall orbital motion of the earth.

There is a small residual force, which is just the tidal force. We emphasize that the pseudo force

of inertia, which is responsible (together with gravitational forces) for the origin of tides on the

earth, is caused by the translational acceleration of the earth relative to the inertial space.
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This acceleration is just the “free-fall acceleration” of the earth under the gravitational pull

exerted on the earth as a whole by the celestial body that causes the tides. The force of inertia as-

sociated with this translational acceleration has the same magnitude and direction everywhere

on the earth and in its vicinity. Some authors, when writing on tides, call this force of inertia

(caused by the translational free-fall acceleration of the earth) the “centrifugal force” (see, for

example, Cramer [5], Sirtoli [6], NOAA [7]). This terminology is misleading, because the “cen-

trifugal” and “centripetal” language is usually associated with the rotational motion. The term

“centrifugal force” is appropriate for the force of inertia existing in the reference frame, which

takes part in the earth’s daily axial rotation, but this centrifugal force is certainly not related to

the origin of tidal forces. However, the earth’s orbital revolution around the sun (as well as the

“free-fall dance” or “whirling” of the earth-moon system around its center of mass) is a “revo-

lution without rotation” (essentially a translational motion) of the relevant geocentric frame of
reference. To avoid misunderstandings, we shouldn’t call this force of inertia, caused by a trans-

lational acceleration of the reference frame, a “centrifugal force.”

It makes sense to divide the problem of tides into two parts: the first part concerns the origin

and properties of tide-generating forces, and the second one relates to the much more compli-

cated issue of the dynamical effect that these time-varying forces have on the ocean. We note

that much of the confusion in the literature is related already to the first (rather simple) part of

this problem, which can be completely and unambiguously solved using Newtonian mechanics.

We have already tried to clarify the issue in an earlier publication on the subject [8]. The present

paper is a further development of this approach.

2. EXPLANATION OF TIDAL FORCES IN TERMS OF PHYSICS
In this paper we present a simple but rigorous physically transparent derivation of the

moon- and sun-induced tide-generating forces in the geocentric reference frame. Then we con-

sider a dynamical response of the ocean to these forces. For this second part, we restrict our

analysis to a simplifiedmodel of the ocean as a uniformwater shell of equal depth wholly cover-

ing the globe. We show how this problem can be reduced to the well-known behavior of a linear

damped oscillator under sinusoidal forcing.

We emphasize that our simplified treatment in the present paper is intended only to make

clear the physical background of the tides and does not describe the complete picture. The purely

theoretical quantitative description of tides for a given location on the earth, derived solely from

first principles, is hardly possible because of the extremely complex structure of the oceans —

the actual dynamical system that responds with tides and tidal currents to the well known tide-

generating forces.

Next we discuss qualitatively the physical nature of the sun- and moon-induced tide-

generating forces in a non-rotating geocentric frame of reference. We determine the static

(equilibrium) distortion of the ocean surface under these forces. Then we obtain expressions

for the tidal forces that are applicable on the rotating earth, and discuss how these forces

depend on time by virtue of the daily axial rotation of the earth.

We show mathematically and illustrate by a simulation program that a uniform rotation of

the system of tidal forces, which are coupled with the apparent motion of the sun (or moon), can

be represented as a superposition of two oscillating quadrupole systems of non-rotating forces

whose axes make an angle of 45
◦
with one another. Each of these systems of forces generates

a steady-state forced oscillation of the ocean (a standing wave). In this way the problem of dy-

namical response of the ocean to time-dependent tidal forces can be reduced to the well-known
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problem of forced oscillations in a linear system. We can treat the tidal wave circulating around

the globe in the adopted simplified model as a superposition of the two standing waves. Finally

the real-world complications of this simplified picture are discussed briefly, as well as the role

of tidal friction in the evolution of the axial rotations and orbital revolutions of celestial bodies.

The paper is accompanied by a set of specially developed simulations implemented as Java

applets that run directly in the browser [9]. These simulations help understanding various as-

pects of this rather difficult but interesting and important issue concerning the origin and prop-

erties of tides. By using the simulations, it is possible to visualize some non-trivial aspects of this

natural phenomenon which is of interest for many people due to its cosmic nature.

2.1. Elementary explanation of the origin of tidal forces
Our planet earth moves with an acceleration relative to the heliocentric inertial reference

frame. This acceleration is produced by the gravitational attraction of the earth to the sun and

also to the moon and to all other celestial bodies. Actually, this is just the acceleration of free

fall experienced by the earth as a whole in the resultant gravitational field produced by all the

nearby and far-off celestial bodies. We emphasize that this acceleration of the earth is indepen-

dent of the velocity of its orbital motion around the sun. This acceleration is also independent of

the velocity which the earth has by virtue of its whirling with the moon around their common

center of mass. The earth would move with the same acceleration were it freely falling in this

external gravitational field. This acceleration is also independent of the daily rotation (spin) of

the earth. What is actually important for the physical explanation of tide-generating forces, is

only the acceleration of the earth, not its orbital velocity and daily rotation.

Hence, to better understand the origin of tide-generating forces, we first use a non-rotating

geocentric reference frame. The origin of this frame is located at the center of the earth, and

the axes are directed toward immovable stars: This frame is not involved in the daily rotation

of the earth. Although the origin of this frame moves approximately in a circle around the sun

(more exactly, around the center of mass of the sun-earth system), the frame itself does not

rotate because the directions of its axes are fixed relative to the distant stars. The motion of this

frame — revolution without rotation — is a translational (though nearly circular) motion. We
can figuratively compare the motion of this frame with the circular motion of the frying pan in

the hands of a cook while the handle of the pan points in the same direction.

With respect to the inertial space, all points of this reference frame move with an accel-

eration a0 whose magnitude and direction are the same for all the points of this frame. Any

body of mass m whose motion is referred to this non-inertial geocentric frame (for example,

an earth’s satellite, or a drop of water in the ocean) is subject to the pseudo force of inertia,

Fin =−ma0. This force is independent of the position of the body relative to the earth. In other

words, the field of this force of inertia is uniform. At the same time, the net gravitational field

of the sun, moon and all other celestial bodies, which creates the acceleration a0 of the earth, is

non-uniform. It is this non-uniformness of the external gravitational field that is responsible for

the origin of tidal forces.

Regarding the role of the daily axial rotation (spin) of the earth in the explanation of tides, we

note the following. Due to this daily rotation (and to a lesser extent due to the orbital motion of

the moon), the apparent positions of celestial bodies, which create the tidal forces, are changing

with time. Thus, these movements are responsible only for the character of time-dependence of

tidal forces in a particular place on the rotating earth. We will take this time-dependence into

account later on in our analysis of the influence of tidal forces on the oceanic waters.
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We emphasize again that the uniform force of inertia, Fin =−ma0, which is responsible for

the tides (together with the gravitational force), must be introduced in the non-inertial frame of

reference whose motion is translational (though almost circular), but not a rotational motion.
Explaining the tides, the authors of textbooks and papers often use the term “centrifugal” to de-

note this pseudo force of inertia (see, for example, Cramer [5], Sirtoli [6], NOAA [7]). Probably

this causes confusion and misconceptions in the literature, because the term “centrifugal” is

usually associated with rotation.

Next for simplicity we explain the origin of sun-induced tidal forces. Tidal forces produced

by the moon (or any other celestial body) can be explained quite similarly. There is no essential

difference in the physics of sun-induced or moon-induced tidal forces. The tidal forces experi-

enced by a body on the earth, which are produced by several external sources (predominantly

by the moon and sun), simply superimpose (add vectorially).

Hence further on let a0 be the acceleration of the earth produced only by the gravitation of

the sun. If the body were placed at the center of the earth, the pseudo force of inertia Fin =−ma0

would exactly balance (cancel) the gravitational attraction Fgr = ma0 of the body to the sun.

In other words, if we consider the earth as a giant spaceship orbiting the sun, a body placed at

the center of this ship would seem to be weightless with respect to the gravitation of the sun, just

as astronauts on an orbital station seem to be weightless in the gravitational field of the earth.

The pseudo force of inertia Fin = −ma0 experienced by a body in the geocentric frame (in

the frame that revolves about the sun-earth center of mass without axial rotation) has the same

magnitude and direction everywhere on the earth— it is independent of the coordinates. On the

other hand, the gravitational pull of the sun Fgr experienced by the same body diminishes with

its distance from the sun and is directed to the center of the sun, and hence both the magnitude

and direction of Fgr depend on the position of the body on the earth. It is the combined action of

Fgr and the force of inertia Fin that we call the sun-induced tidal force (or tide-generating force).
These differential effects of gravity described by tidal forces give rise, in particular,

to solar (and lunar) gravitational perturbations of an earth satellite’s geocentric orbit. The

tide-generating forces slightly distort the earth’s gravitational pull that governs the satellite’s

motion. This means that the satellite, after a revolution, does not return exactly to the same

point of the geocentric reference frame. On the surface of the earth, these same forces give

rise to the tides. We emphasize again that tidal forces are caused not by the sun’s (or moon’s)

gravitational field itself, but rather by the non-uniformity of this field.

Describing the tides, we can avoid using a non-inertial reference frame, being not inclined

to introduce the concept of the pseudo force of inertia. In doing so, we can use a somewhat dif-

ferent language in the derivation of the tidal force: Instead of discussing the vector addition of

the pull of the sun and the corresponding pseudo force of inertia arising from the non-inertial

character of the geocentric reference frame, we can use instead an inertial (heliocentric) frame.

In this approach the tidal force experienced by an earthly body can be found by the vector

subtraction of the gravitational force of the sun on the body at its given location with the grav-

itational force of the sun on the same body were it located at the center of the earth. The two

ways of thinking about it are equivalent and yield the same results.

Indeed, when viewing the situation on the earth from the inertial frame of reference, we

can apply the Galilean law according to which, in the same gravitational field (here the field

of the sun), all free bodies experience equal accelerations. Hence the earth as a whole and all

free bodies on the earth, being subjected to almost the same solar gravitational field, are very

nearly accelerated toward the sun. Consequently we do not particularly notice the influence of

solar gravitation on what happens on the earth. The small differences between the acceleration
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of the earth as a whole and of the earthly bodies depend on the distances of the bodies from

the center of the earth, because these differences are caused by the non-uniformity of the solar

gravitational field over the extent of the earth. Although such approach allows us avoid intro-

ducing pseudo forces, the usage of a non-inertial frame of reference that moves translationally

is physically more transparent and makes the mathematics simpler.
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Figure 1. The tidal forces at different points over the earth
Figure 1 illustrates the origin and properties of the tide-generating forces produced by the

sun on the earth and in its vicinity. On this schematic image, the size of the earth E is strongly
exaggerated compared to the earth-sun distance R. As for the spatial size of the sun, it doesn’t
matter at all, because in this problem the sun plays only a role of the source of the gravitational

force, and consequently all its mass can be considered as if concentrated in its center.

The free-fall acceleration of the earth E in the gravitational field of the sun S (relative to
the inertial space) is a0 =GMsun/R2

, where Msun is the mass of the sun, and R is the sun-earth
distance. We note again that only the acceleration caused by the gravitation of the sun is impor-

tant, but not the velocity of the earth in its orbital motion. The gravitational pull of the sun Fgr

experienced by any body (e.g., by a satellite) at point A almost equals the pseudo force of iner-
tia Fin in magnitude, because the distances of the body and of the center of the earth from the

sun are almost equal. However, the gravitational force here is directed not exactly opposite to

the inertial force. Thus, their non-zero resultant, the tidal force FA , is directed toward the earth

(vertically downward). Figure 1 allows us to evaluate its magnitude:

FA ≈ Fgrα≈ Finα≈ ma0
r

R
, (1)

whereα= r /R is the angular distance between the body and the center of the earth as seen from
the sun. The tidal force FB at the opposite point B equals FA in magnitude and is also directed

vertically downward to the earth. On the surface of the earth, the tidal force is directed vertically

downward at all places (forming a circle) where the sun is in the horizon at that moment.

The distance from the sun to the body at point Z (for which the sun is at the zenith) is smaller
than to the center of the earth. Here the gravitational pull of the sun is somewhat greater than

the pseudo force of inertia. Hence, the tidal force FZ at this point is directed vertically upward

(from the earth toward the sun). Its magnitude

FZ =G
mMsun

(R − r )2 −ma0 = ma0

[
R2

(R − r )2 −1

]
≈ ma0

2r

R
(2)

is approximately twice the magnitude of the tidal forces at points A and B . Similarly, at the
opposite point N (for which the sun is at nadir) the pseudo force of inertia is greater than the
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gravitational pull of the sun, and so the tidal force FN is also directed vertically upward from

the earth (and from the sun). In magnitude FN approximately equals FZ .

We note again that the tidal forces depend on the acceleration a0 of the earth. They are

independent of the orbital motion of the earth and would also occur if the earth and sun were

simply falling toward each other under the mutual gravitation, or moving in the inertial space

with arbitrary velocities.

The expressions for the tidal forces, FA = ma0r /R = (GmMsun/R2)(r /R), Eq. (1), and
FZ ≈ 2FA given by Eq. (2), are valid also for the tidal forces produced on the earth by the

moon if we replace Msun by the mass of the moon Mmoon and R by the moon-earth distance.
There is no intrinsic difference between the physical origin of sun-induced and moon-induced

tide-generating forces. In both cases, the only important factor is the acceleration of the earth

under the gravitational pull of the celestial body that causes the tides on the earth, not the

orbital velocities of both gravitationally coupled bodies (the earth and the sun, or the earth and

the moon).

The tidal force experienced by any object is proportional to its distance r from the cen-
ter of the earth and inversely proportional to the cube of the distance R to the celestial body
that causes the force, and is proportional to the mass of the source body. As noted, lunar tide-

generating forces on the earth are more than twice those of the sun (their ratio is approximately

2.2) because the moon is much closer to the earth.

2.2. Horizontal and vertical components of the tidal force
The sun-induced tide-generating forces exerted on the earthly bodies and on the earth itself

have a quadrupole character: they stretch the earth along the sun-earth line, and squeeze the

earth in the directions perpendicular to that line, as shown in Figure 2. At points A and B tidal
forces are directed vertically downward; at points Z and N — vertically upward. At these four

points tidal forces does not have horizontal components. At intermediate points tidal forces have

intermediate directions, and have non-zero horizontal components (see Figure 2). The system of

tidal forces has an axial symmetry with respect to the sun-earth line.
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r
r

a

Figure 2. Quadrupole configuration of tidal forces at different points over the earth’s surface.
Calculation of tidal forces for arbitrary points requires a somewhat more sophisticated

mathematics (see Appendix I). Because of the axial symmetry with respect to the sun-earth

line, the vertical and horizontal components of the tidal force at all points (located at the same

distance r from the center of the earth) depend only on the angle that determines the position
of the mass pointm on or near the surface of the earth measured from the direction to the sun

(this angle θ is shown in Figure 3).

In Figure 3, vector R is the radius vector of the earth relative to the sun, and r is the radius
vector of somemass pointm relative to the center of the earth. Vectorial addition of the uniform
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Figure 3. For the calculation of the tidal force at an arbitrary point H(r, θ) near the earth

force of inertia and the force of gravitational attraction of the mass pointm to the sun yields for

the tidal force Ftid at an arbitrary position the following expression (for the relevant calculation

see Appendix I, Eq. (14)):

Ftid ≈−G
mMsun

R3

[
r−3R

(R · r)

R2

]
. (3)

Multiplying the right-hand side of Eq. (3) by the unit vector r/r directed from the center of
the earth to the point in question, we obtain the following dependence of the vertical component

of the tidal force Ftid on the angle θ (see Figure 3) between the directions of vectors r and (−R):

(Ftid)vert =G
mMsun

R3 r (3cos2θ−1) = Fgr
r

R
(3cos2θ−1). (4)

We remind that θ is the angle between the directions to the point in question and to the celestial

body that is the source of the tidal force (see Figure 3). At all the points for which cosθ =±1/
p

3,
(Ftid)vert = 0, that is, the tidal force is directed horizontally.
For the horizontal component of the tidal force at an arbitrary point H whose geocentric

position is determined by coordinates r and θ (see Figure 3), Eq. (3) yields:

(Ftid)hor =−3G
mMsun

R3 r cosθ sinθ =−3

2
Fgr

r

R
sin(2θ). (5)

The horizontal component (Ftid)hor is a maximum at all the points of the earth for which

θ =±45◦
and θ =±135◦

. This maximum value of the horizontal component equals (3/2)(r /R)Fgr

or, equivalently, (3/2)(r /R)GmMsun/R2
. The horizontal component of the solar tide-generating

force causes a deviation of the plumb line from the direction of the earth’s own gravity

(at θ =±45◦
) only by 0.008′′.

The magnitude of the tidal force experienced by a water drop in the ocean or by an artificial

satellite is proportional to its distance r from the center of the earth and inversely proportional
to the cube of the distance R to the celestial body that causes the force.
Expression (4) for the vertical component of the tidal force Ftid can be transformed to the

following equivalent form:

(Ftid)vert =G
mMsun

R3 r (3cos2θ−1) = 3

2
G

mMsun

R2

r

R
(cos2θ+ 1

3
). (6)

The last term in the right-hand expression of Eq. (6) is independent of θ. Hence it is the same

everywhere on the earth (for a given value of r ) and adds only a tiny constant value to the
vertical force of the earth’s gravity mg (on the earth’s surface about ten million times smaller
thanmg ). This term in the vertical component of the tidal force is thus independent of time on
the spinning earth. It can therefore be dropped as far as the tides are concerned.
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Thus, the vertical and horizontal components of the tidal force exerted on a body of mass

m located near the earth at a position determined by angle θ and radius r are given by the
following expressions:

(Ftid)vert = 3

2
Fgr

r

R
cos(2θ); (Ftid)hor =−3

2
Fgr

r

R
sin(2θ), (7)

where Fgr = GmMsun/R2
is the total gravitational pull of the sun (or the moon) experienced

by the body anywhere on the earth. This representation of the tide-generating force is espe-

cially convenient because Eqs. (7) define a tidal force vector whose magnitude (3/2)(r /R)Fgr =
(3/2)GmMsun/R2(r /R) is independent of the angle θ: the tidal forces at all points that lie at
a given distance r from the earth’s center are equal in magnitude and differ only in direction.
Hence it is admissible to consider that all the vectors of tidal forces shown in Figure 2 for differ-

ent points at the same height over the earth have the same length.

Certainly, the system of the moon-induced tidal forces also has a quadrupole character.

Equations (7) are also valid for the tidal forces produced by the moon, provided we replace

the mass of the sun Msun by the mass of the moon Mmoon and the sun-earth distance R by the
moon-earth distance. In this case the angle θ in Eqs. (7) determines position of the body relative

to the earth-moon line. The entire pattern of tidal forces is tied to the sun’s or moon’s position

and follows its apparent path around the earth.

The lunar tide-generating force, Ftid = (3/2)GmMmoonr0/R3
, experienced by a body of mass

m on the surface of the earth (here r0 is the earth’s radius), is very small compared to its

weight, that is, to the earth’s force of gravity Fgrav = mg = GmMearth/r 2
0 . If we let the ratio

Mmoon/Mearth = 1/81 and the mean earth-moon distance R = 60r0 (actually this distance varies

between 57r0 and 63.7r0 because of the elliptical shape of the moon’s orbit), we obtain:

Ftid

Fgrav
= Ftid

mg
= 3

2

Mmoon

Mearth

r 3
0

R3 = 8.6 ·10−8. (8)

Although the tide-generating forces are very small in comparison with the earth’s force of

gravity (on the surface of the earth the lunar tidal force at its maximum being only about 10−7

times the earth’s gravitational force), their effects upon the ocean water are considerable be-

cause of their horizontal component, which is orthogonal to the earth’s gravitational field and

varies with time periodically because of the earth’s axial rotation. This horizontal component

shifts the ocean water around the globe. We emphasize again that the horizontal (tangential to

the surface) components of the tidal forces are much more influential on the ocean tides and on

the orbits of earth’s artificial satellites compared to the vertical (radial) components of the tidal

forces, which only modify slightly the earth’s gravitational force.

2.3. The static distortion of the water surface
To estimate the static (equilibrium) distortion of the ocean’s surface due to the tidal forces,

we can use the hypothetical situation of a non-rotating planet on which the tide-generating

forces are nearly time-independent. (This model would be strictly applicable to a planet whose

axial rotation is synchronized with the orbital motion of its moon that causes the tidal forces.)

From the symmetry of tidal forces, Eqs. (7), illustrated also in Figure 2, we can assume that the

distorted surface with the “tidal bulges” at points Z and N has an ellipsoidal shape of the same

symmetry. Mathematically, this spheroid (which is characterized by an axial symmetry with re-

spect to the sun-earth line) is given by the following expression:

r (θ) = r0 +a cos2θ, (9)
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where 2a ¿ r0 is the difference between the static maximal and minimal levels at points Z and
A, respectively (see Figure 4).

S E

q

A

B

Z N

Figure 4. The equilibrium static distortion of the water surface
Hence we can write for the small inclination α of the water surface with respect to the

horizon:

α= 1

r

dr (θ)

dθ
≈−2a

r0
sin2θ. (10)

We see that the water surface is horizontal (α = 0) at locations θ = 0 and θ = 90◦
(points Z

and A, see Figure 4). The angle α is a maximum at points where the tidal force is directed hor-
izontally, namely at θ = ±45◦

and at θ = ±135◦
, and equals 2a/r0. In equilibrium the distorted

water surface is orthogonal to the plumb line. The plumb line (on a non-rotating planet) shows

the direction of the vector sum of the planet’s gravity and the tidal force. A small departure of

the plumb line from the direction of the planet’s gravity is caused by the horizontal component

of the tidal force. Therefore, the angle α equals the ratio of the horizontal tidal force (Ftid)hor to

the force of the planet’s gravity Fgrav = mg . If we equate α = 2a/r0 at θ = 45◦
to (Ftid)hor/Fgrav

and take into account that for sun-induced tides, (Ftid)hor/Fgrav = (3/2)(Msun/Mearth)(r 3
0 /R3),

we find for the maximum static level difference 2a at points Z and A the following value:

2a = 3

2
r0

Msun

Mearth

r 3
0

R3 . (11)

Equation (11) yields 2a = 0.24m. A similar expression is valid for the static distortion of the
ocean surface due to the lunar tidal force, and yields 2a = 0.54m for the moon-induced static
distortion.

2.4. Tidal forces on the rotating earth
In the above treatment of tide-generating forces we have used a revolving but non-rotating

geocentric reference frame. The origin of this frame moves in a circle around the sun-earth

(moon-earth) center of mass, but the frame itself does not rotate because the directions of its

axes are fixed relative to the distant stars. That is, the frame moves translationally in a circle.

This reference frame is convenient for the analysis of motion of an earth’s artificial satellite.

If we ignore the perturbations caused by tidal forces, the earth’s satellite traces out a closed

elliptical orbit relative to this reference frame.

To introduce tidal forces on the rotating earth, we must use a true geocentric frame of refer-

ence that takes part in the daily rotation (spin) of the earth. This frame is non-inertial, and hence

we should be concerned with the acceleration of its different points. We can consider themotion
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of the earth (and of the true geocentric reference frame) as consisting of two components. The

first is the component considered above, namely the translational motion (revolution without

rotation) about the sun-earth (moon-earth) center of mass under the gravitational forces. The

second component is a uniform daily rotation (spin) of the earth about an axis passing through

the center of the earth.

Both these motions of the earth are important in the problem of tides, but the roles they play

are quite different. The acceleration a0 related to the translational motion of the earth under the

external gravitational forces is responsible for the origin of the uniform pseudo force of inertia

Fin =−ma0, whose action on a body on the earth, combined with the non-uniform gravitational

pull of the sun (moon), is described by the above considered tidal force Ftid. We note again that

only the acceleration a0 = GMsun/R2
of this translational motion is important, not the orbital

velocity of the earth.

To avoid confusion often encountered in the literature, we must be careful with the termi-

nology and definitions. A tide is a distortion in the shape of one body induced by the gravi-

tation of another celestial object. In discussing tides, we should be concerned only with those

gravitational and inertial forces that depend on the apparent position of the celestial body that

produces the tide.

Due to the axial rotation of the earth, its points are moving with centripetal accelerations

directed towards the axis. These centripetal accelerations give rise to centrifugal pseudo forces

that increase in proportion to the distance from the earth’s axis. These forces have nothing to do

with tides. In order to avoid confusion, we shouldn’t mix these centrifugal pseudo forces of daily

rotation with the considered above translational pseudo force of inertia.

The centrifugal force produced by the earth’s daily rotation is much greater in magnitude

than tidal forces. Because of the centrifugal forces, the equilibrium shape of the earth (with the

oceans that cover it) differs from an ideal sphere— it is approximately an ellipsoid of rotation

(spheroid) whose equatorial diameter is a bit greater (about 45 km) than the polar diameter. The

centrifugal effect of the earth’s daily rotation causes an equatorial bulge, which is the principal

departure of the earth’s shape from an ideal sphere. But we must distinguish such earth shape

distortions from tidal effects.

Discussing the tides, we are not concerned with this constant distortion of the earth, because

this distortion is independent of the apparent position of the celestial body that produces the

tides. The equatorial bulge isn’t due to gravitational fields of an external mass, and it has no

periodic variations. Actually, this oblate shape is the reference baseline against which real tidal

effects are measured. Analyzing the origin of tides, we have no need to take this distortion into

account. We emphasize again that the centripetal acceleration of the axial rotation adds nothing

to tidal forces.

However, the daily rotation of the earth makes tidal forces time-dependent because the

pattern of tidal forces on the earth is coupled to the apparent positions of the sun and moon.

A dynamical response of the oceanic waters to these time-dependent forces on the spinning

earth is the essence of the phenomenon of tides. For an observer on the earth, the system of

tide-generating forces, coupled to the apparent position of the source, rotates as a whole (rotates

“rigidly”) with angular velocity Ω of the earth’s daily rotation, following the changing apparent

position of the celestial body in question.

This daily rotation of the tide-generating forces is illustrated by Figure 5, and much more

clearly by the simulation program “The Oceanic Tides” developed by the author (Butikov [9]).

Although the sun-induced system of tidal forces rotates as a whole with the angular velocity Ω

of the earth’s axial rotation, that is, with a period of 2π/Ω, the true period T of variation of the
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Figure 5. The quadrupole configuration of tide-generating forces, rotating as a whole in accordance with
the changing apparent position of the moon

tidal forces on the earth equals half this value (T = π/Ω) because of the quadrupole symmetry
of the system of forces (the semidiurnal tide). For the sun-induced tidal forces the period equals

12 hours. For the moon-induced tidal forces the period is a bit longer (12 hours 25 minutes).

The difference between the two periods is due to the orbital motion of the moon, which is also

influential on its apparent position.

To keep the things simple, further on we will consider the case in which the celestial body

that causes the tides (sun or moon) is in the equatorial plane of the earth. If we fix a point on

the equator of the earth, the local tidal force vector executes a uniform rotation in the vertical

plane, making two complete revolutions during a day. The simulation [9] clearly shows how the

daily rotation of the whole system of tidal forces produces this doubly-fast uniform rotation of

the tidal force at a given equatorial point, as seen by an observer on the spinning earth.
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Figure 6. The changes in directions of the tidal forces at different fixed points in accordance with
the changing apparent position of the moon

The changes in directions of the tidal forces at different fixed points are shown in Figure 6

(b — for only 4 fixed points, c — for 8 fixed points). When the apparent direction towards the
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sun (or moon) changes through an angle θ, each of the tidal force vectors at fixed points turns in

the same direction through the twice as great angle 2θ. We note that for any fixed point on the
earth the tidal force vector in Figure 6,b–c makes the same angle 2θ with the direction of tidal
force at this particular point in Figure 6, a.
At the opposite points of the equator, the tidal force vectors at any timemoment are directed

oppositely, that is, they are rotating in the opposite phases. At any point of the equator the tidal

force is directed upward twice during a day. This occurs when the sun (or moon) for this point is

at the zenith and nadir. Also twice a day the tidal force is directed downward. This occurs when

the sun (or moon) for this point is at the horizon.

Because of this periodic dependence on the time, the tidal forces, in spite of their small mag-

nitude compared even to the centrifugal force of inertia caused by the earth’s daily rotation,

produce magnificent oceanic tides.

2.5. Decomposition of rotating tidal forces onto oscillating forces
To obtain the dynamical picture of the oceanic tides on the rotating earth, we should use the

reference frame that rotates with the earth. As we have seen above, relative to this frame the

quadrupole system of tide-generating forces, being coupled to the position of the sun (moon),

rotates as a whole while the sun (moon) travels along its apparent daily path around the earth.

This rotation of the whole system of forces occurs at an angular velocity Ω, the angular velocity

of the earth’s daily rotation (or the difference between Ω and the angular velocity of the moon

in its orbit for moon-induced tides).

In the problem of tides, expressions for the components of tide-generating forces (Ftid)hor

and (Ftid)vert in Eqs. (7) are applicable also to the true geocentric frame of reference, which

takes part in the daily axial rotation of the earth. To find analytical expressions for the time

dependence of the tidal forces at a given point in the equatorial plane of the spinning earth, we

substitute θ(t ) =Ωt in Eqs. (7) for (Ftid)hor and (Ftid)vert. This substitution yields the following

expressions for the point of the equator at which the sun culminates (passes through its zenith)

at t = 0:

(Ftid)vert(t ) = Ar cos(2Ωt ); (Ftid)hor(t ) =−Ar sin(2Ωt ), (12)

where A = (3/2)Fgr/R = (3/2)GmMsun/R3
. At any other equatorial point of the earth, the tidal

force vector also rotates in the vertical plane with angular velocity 2Ω. That is, all the vectors of
tidal forces at different points rotate synchronously but with different phases (Figure 6, a–c).
Equations (12) show that at point Z (and at any other point of the equator) the rotating

vector of the tidal force can be considered as a superposition of two forces of fixed directions

(vertical and horizontal), which oscillate with frequency 2Ω and a phase shift of quarter period.
This decomposition of rotating tidal forces is illustrated by Figure 7, a–b for 4 fixed equatorial
points and for 8 points, respectively.

Since this decomposition of a uniformly rotating vector onto two orthogonal oscillating vec-

tors is valid for any point of the equator, the whole rotating system of tidal forces can be repre-

sented as a superposition of two quadrupole systems of forces oscillating with a phase shift of

quarter period. These two oscillating systems (left and right columns of Figure 8, respectively)

do not rotate; their axes of symmetry make an angle π/4 to one another. At each point the force
of one of these systems oscillates along the radial (vertical) direction, while the force of the other

system—along the tangential (horizontal) direction. The oscillations of these orthogonal compo-

nents occur a quarter period out of phase. At t = 0 and at t = T /4 the forces of one system (left in
Figure 8) reach their maximum, while the forces of the other system (right) turn to zero, and vice
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Figure 7. Decomposition of rotating tidal forces onto oscillating vertical and horizontal components for 4
fixed equatorial points (a) and for 8 points (b)

versa at t = T /8 and t = 3T /8. At any given point in the equatorial plane, the vector sum of these
mutually orthogonal oscillating forces produces a force of constant magnitude whose direction

rotates uniformly with angular velocity ω = 2Ω. The time sequence 0 → T /8 → T /4 → 3T /8
in Figure 8 shows how during T /2 each force executes one full revolution. For different points
on the earth, the phases of these rotating vectors differ.

This behavior of the tidal forces can be clearly observed with the help of the above men-

tioned simulation program [9] developed by the author and available on the web. Such a repre-

sentation of rotating tidal forces as the two systems of oscillating forces with the axes of symme-

try at an angle π/4 to one another will help us in understanding the tidal wave, which circulates
around the globe, as a result of superposition of two steady-state forced oscillations of the ocean

water.

We note again that the first part of the problem of tides, namely the origin and properties of

tide-generating forces, can be completely solved rigorously within the framework of Newtonian

mechanics, as we have shown above.

3. THE TIDES AS STEADY-STATE FORCED OSCILLATIONS
Most textbook authors oversimplify the problem of tides and consider (after Newton and

Bernoulli) only the so-called static (or equilibrium) theory of tides, which treats the ocean sur-

face as a liquid ellipsoid stretched along the earth-moon line (or earth-sun line for sun-induced

tides), as if this surface were always in equilibrium under the earth’s force of gravity and tidal

forces produced by the moon (or sun). In this approach, the tidal bulges are aligned with the

earth-moon (or earth-sun) axis. Therefore on the spinning earth the moments of high water at

a given location should coincide with the upper and lower culminations of the moon (sun), that

is, when the moon (sun) passes through its zenith and nadir. Observations do not agree with

this prediction. Instead, almost the opposite is usually observed, at least in the open ocean: the

moments of low tide occur approximately at the culminations of the moon.

A complete theory of the tides should take into account the dynamical response of the ocean

to the time-dependent tide-generating forces. The dynamical theory of tides (first suggested by

Laplace and later developed by Airy) treats the tides as a steady-state forced motion (under
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Figure 8. Two quadrupole systems of oscillating forces (left and right columns) that do not rotate. Their
axes of symmetry make an angle π/4 to one another

varying tidal forces) of a dynamical system (the ocean). Such a theory predicts a resonant growth

of the steady-state amplitude in cases when the driving period approaches the period of natural

oscillations.

3.1. The natural standing wave
To avoid the complications related to the three-dimensional character of the problem and

to explain the physical aspect of the dynamical theory using the simplest possible model, we

imagine, following Airy, water in a wide canal of uniform depth engirdling the entire earth

along the equator.

Imagine the water surface in this canal being distorted statically by some quadrupole system

of forces (like the tide-generating forces), so that two bulges are formed on the opposite sides of

the earth, changing the shape of thewater surface from circular to elliptical. This distorted shape

of the water surface is shown (strongly exaggerated) on the left panel of Figure 9.

t = 0 t = T /2 t = T0 0

Figure 9.Quadrupole oscillations of the water level in a wide canal of uniform depth engirdling the entire
earth along the equator
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If the forces maintaining this shape suddenly vanish, the earth’s gravity would make the

distorted surface restore its equilibrium, circular shape. The water would start to flow and the

bulges disappear so that after a time, namely a quarter period, the water surface would become

circular. But because the water continues to move, after another quarter period the bulges reap-

pear in new positions showing an elliptical distortion of the surface along the line perpendicular

to the line of the original distortion (central panel of Figure 9). Then the motion repeats itself in

reverse (right panel of Figure 9). This motion of water in the circular canal is a standing gravita-

tional surface wave whose wavelength equals half-circumference of the globe. Such a mode of

oscillation is characterized by a certain natural period T0.

The superposition of two such standing waves whose phases differ by π/2 and whose el-
liptical axes are separated by 45

◦
produces a circulating (traveling) wave of constant elliptical

shape and a wavelength equal to half of the earth’s circumference. The two opposite bulges in

the water surface travel with this wave around the globe preserving their height and shape.

An essential point in explaining the steady-state phase shift between the moments of high

tide and the culmination of the moon (sun) is the relation between the natural period T0 of this

circulating wave and the period T of the tide-generating driving forces. It is possible to estimate
T0 as the time taken by the circulating surface wave to travel along half the globe. In the limiting

case of very long waves on the surface of shallowwater (λÀ h) the speed of wave is determined
by the earth’s gravity g and depth h, and is independent of the wavelength λ. From hydrody-
namics we know that this speed equals

√
g h. We assume that the mean value h of the ocean

depth is 3.5 km. During a period T0 the wave travels half the circumference of the globe πr0,

and hence T0 =πr0/
√

g h ≈ 30 hours. Thus, the approximately 12-hour driving external period
T is less than natural period T0 of the water free oscillation in the equatorial canal surrounding

the earth.

We emphasize that thewater of the ocean takes part in the daily rotation of the earth. It is the

shape of the water surface (the wave) that is moving with respect to the rotating earth. Relative

to the earth, water particles on the surface of the ocean execute oscillatory motions in closed

paths that are considerably stretched horizontally. These back and forth motions constitute the

tidal currents. On the average, the water is stationary in the rotating geocentric frame.

3.2. The tides as steady-state forced oscillations of the ocean
Turning to the second part of the discussed physical problem, we can consider the tides in

the equatorial canal as steady-state forced oscillation of the water surface due to the well-known

time-dependent tidal forces. Each of the two above-described oscillating systems of forces ex-

cites a mode of forced oscillation of the water, specifically the mode of the same symmetry as is

characteristic of the corresponding system of driving forces. These modes have elliptical shapes,

much like the above considered natural oscillations, namely, the elliptical standing waves whose

axes make an angle of 45
◦
with one another. We can consider these modes to be orthogonal

in the sense that their spatial forms are described by eigenfunctions forming an orthogonal

two-dimensional basis in the function space. Each mode is characterized by a single normal co-

ordinate whose time dependence is found as the periodic solution to the differential equation

describing the forced motion of an ordinary linear damped oscillator.

Any steady-state forced oscillation occurs exactly with the period of the driving force. The

amplitude and phase lag of the oscillation depend on the amplitude of the driving force, on the

damping factor, and, more importantly, on the relation between the driving and natural peri-

ods. The two systems of oscillating driving tidal forces are characterized by equal amplitudes
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and frequencies. Also the natural frequencies and damping factors of both excited modes are

equal. Hence both excited modes also have equal amplitudes and equal phase delays behind the

corresponding driving forces.

t = 0 t = T/8

t = T/4 t = 3T/8

Figure 10. Quadrupole steady-state oscillations of the water level in a wide canal forced by the two sys-
tems of oscillating forces shown in left and right columns of Figure 8

If we ignore friction (dissipation of mechanical energy in the excited oscillation), the forced

motion occurs exactly in phase with the driving force, provided the driving period T is longer
than the natural period (T > T0). Otherwise (if T < T0) the forced motion occurs in the opposite

phase with respect to the driving force. Such oscillations (at T < T0) of the water level in a wide

canal are shown by left and right columns in Figure 10. Each column corresponds to the relevant

system of oscillating forces shown in left and right columns of Figure 8, respectively. With fric-

tion, there is a phase lag of forced water oscillations behind the driving forces. The amplitude of

these forced oscillations and the phase lag are discussed in Appendix II.

The two forced oscillations in this linear system, each excited by one system of driving tidal

forces, are independent of one another, and the resulting forced motion is a superposition of

these forced oscillations. The superposition of these two oscillatory modes produces a forced

circulating (traveling) elliptical wave. The time sequence 0 → T /8 → T /4 → 3T /8 in Figure 10
shows how during T /2 the resulting elliptical wave makes a half-revolution (clockwise) around
the globe. This behavior of the traveling tidal bulges is very clearly illustrated by the simulation

program [9].

Distortion of the water surface in the circulating tidal wave forced by a celestial body is

illustrated by Figure 11. The distortion is strongly exaggerated. Due to the earth’s axial rota-

tion (counter-clockwise), the apparent position of the celestial body moves clockwise. The water

bulges are almost aligned with the direction to apparent position of the celestial body at T0 < T
(left panel); a small lag is caused by friction. At T0 > T (right panel) the two bulges are aligned
almost perpendicularly to this direction.

For the simplified model of tides in the equatorial canal of uniform depth (and also for an

earth covered everywhere by an ocean of uniform depth), the natural period of free oscilla-

tion is longer than the 12-hour driving period. Thus the dynamical theory predicts in this case
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Figure 11. The celestial body that is the cause of tides and the circulating tidal wave at T0 < T (left panel),
and at T0 > T (right panel)

a stationary circulating elliptically shaped wave whose axis (the line of tidal bulges) is almost

perpendicular to the earth-sun (earth-moon) line.

On the other hand, the natural period of an elastic wave in the crust of the earth is shorter

than the 12-hour period of the tidal forces. Hence, in the frictionless model, bulges in the earth’s

crust are oriented along the earth-sun (earth-moon) line. Observations show that the solid body

of the earth actually experiences twice-daily tides with maximum amplitude of about 30 cm

whose bulges lag approximately 3
◦
behind the earth-moon line. For more details on the circu-

lating tidal wave see Appendix II.

In the above discussion, we considered only the steady-state oscillation of the ocean sur-

face (a stationary wave), assuming that the transient is already over. For this steady motion to

establish itself, some friction (even if very small) is necessary. In the problem of tides, we are

concerned with the water motion caused solely by the eternally lasting tidal forces, and there-

fore we have had centuries and evenmillennia for any transient to fade away. Therefore our use

of the steady-state solution is appropriate for tides. Again we emphasize that in the dynamical

theory of tides, the driving tide-generating forces are perfectly well known, so that most uncer-

tainties originate from a very poor correspondence between the accepted simple model of the

dynamical system and the real oceans of the earth.

3.3. Beyond the simple model: Real-world complications
The pattern of lunar tide-generating forces is coupled to the apparent position of the moon

with respect to the earth. The relative position of the moon has an average periodicity of

24 hours 50 minutes. The lunar tide-generating force experienced at any location has the same

periodicity. When the moon is in the plane of the equator, the force runs through two identical

cycles within this time interval because of the quadrupole symmetry of the global pattern of

tidal forces. Consequently, the tidal period is 12 hours 25 minutes in this case (the semidiurnal

lunar tide). However, the lunar orbit doesn’t lie in the plane of the equator, and the moon is

alternately to the north and to the south of the equator. The daily rotation of the earth about an

axis inclined to the lunar orbital plane introduces an asymmetry in the tides. This asymmetry

reveals itself as an inequality of the two successive cycles within 24 hours 50 minutes.

Similarly, the sun causes a semidiurnal solar tide with a 12-hour period, and a diurnal solar

tide with a 24-hour period. The interference of the sun-induced tidal forces with the moon-
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induced tidal forces (the lunar forces are about 2.2 times as strong) causes the regular variation

of the tidal range between the spring tide, when the range has its maximum (occurring at a new

moon and at a full moon, when the sun and moon are in the same or in the opposite directions

and their tide-generating forces are aligned), and neap tide, when the range has its minimum

(which occurs at intermediate phases of the moon). The amplitude of a spring tide may be 2.7

times the amplitude of a neap tide.

In a complete description of the local variations of the tidal forces, still other partial tides

play a role because of further inequalities in the orbital motions of the moon and the earth. In

particular, the elliptical shape of the moon’s orbit produces a 40 percent difference between the

lunar tidal forces at the perigee and apogee of the orbit. Also the inclination of the moon’s orbit

varies periodically in the interval 18.3
◦
– 28.6

◦
, causing a partial tide with a period of 18.6 years.

The most serious complications in the observed picture of tides are related to complexity

of the dynamical system that responds to fairly well known tidal forces. The earth is not sur-

rounded by an uninterrupted water envelope of equal depth, but rather has a very irregular

geographic alternation of land and seas with complex floor geometry. The actual response of

the oceans and seas to the tidal forces is extremely complex. In enclosures formed by gulfs and

bays, the local tide is generated by an interaction with the tides of the adjacent open ocean. Such

a tide often takes the form of a running tidal wave that circulates within the confines of the

enclosure. In some nearly enclosed seas, such as the Mediterranean and Baltic seas, the tidal

forces may generate an oscillation in the form of a standing wave, or tidal seiche. In these seas,

the tidal range of sea level is only on the order of centimeters. In the open ocean, it generally is

on the order of decimeters.

In bays and adjacent seas, however, the tidal range may be much greater because the shape

of a bay may favor the enhancement of the tide inside. In particular, there may be a resonance

response of the basin to the tidal forces.

Tides are most easily observed along seacoasts, where the amplitudes of water level are

exaggerated. When tidal currents run into the shallow waters of the continental shelf, their rate

of advance is reduced, the energy accumulates in a smaller volume, and the rise and fall are

amplified.

Peculiarities of tidal motions in coastal waters, particularly in gulfs and estuaries, depend

on the details of coastal geometry and water-depth variation over a complex sea floor. Tidal

amplitudes and phase lags, the contrast between spring and neap tides, and the variation of

times of high and low tide all change widely from place to place.

For the aforementioned reasons, a purely theoretical calculation of the times and heights of

tides at a particular location is practically impossible. Nevertheless, for a given place on a coast,

the tides can be quite successfully predicted on the basis of accumulated long-term observations

of the tides at this place. The analysis of the observations relies on the fact that any tidal pattern

is a superposition of variations associated with known periodicities in the motions of the moon

and sun relative to the earth.

As we have seen above, in the absence of friction the phase shift between the variation of the

driving forces and the steady-state forced oscillations in the open ocean is zero below resonance

and equals half-period over resonance. In the first case the tidal bulges are oriented along the

earth-sun (or earth-moon) line, while in the second -perpendicularly to this line. In both cases

the net torque of the gravitational force exerted on the earth equals zero.

The tidal friction destroys the symmetric configuration of the tidal bulges, making them de-

viate from the line earth-moon or from the perpendicular line. Due to this deviation a retarding

torque appears, giving rise to a gradual slowing down of the earth’s axial rotation. Simultane-
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ously the moon’s orbit gradually expands. Such a heavenly evolution eventually synchronizes

the axial rotation with the orbital motion of both celestial bodies coupled by mutual gravitation.

Theoretical background and further details of the phenomena caused by tidal friction can be

found, for example, in our previous paper [8].

4. CONCLUDING DISCUSSION
Tidal forces exerted on the earth and the earthly bodies result from gravitation of other

celestial bodies, primarily of the moon and sun. In the origin of tidal forces, the gravitational

field itself doesn’t play the decisive role, but rather the non-uniformity of this field throughout

the globe (the differential gravitation). Since we are interested in tidal forces on the earth, the

geocentric reference frame is the most suitable for their description and for understanding the

underlying physics. This is a non-inertial reference frame, so that in the framework of Newto-

nian mechanics any body in this frame is subjected to pseudo forces of inertia, in addition to all

other real forces of interaction with the surrounding bodies.

The tidal force exerted on any body on the earth equals the vector sum of its gravitational

attraction by the celestial body (moon or sun) and the uniform force of inertia associated with

translational acceleration of the earth due to its attraction as a whole by the celestial body in
question. This force of inertia is independent of the orbital velocity of the earth in its motion

around the sun (or in its whirling together with the moon about their common center of mass).

For different positions near the earth, the tidal forces form a quadrupole system with the axis

of symmetry along the line joining the earth center with the apparent position of the celestial

body. If the earth were not spinning, its water shell would have under these tidal forces (and

under the earth’s gravity) an equilibrium spheroidal shape stretched slightly along this line.

For an observer on the spinning earth, this quadrupole system of tidal forces rotates as

a whole with the angular velocity of the earth’s axial rotation. At any fixed equatorial point

on the earth, the tidal force (produced by the moon or sun when it occurs over the equator)

rotates in the vertical plane with twice as great angular velocity. The system of these rotating

vectors can be represented as a superposition of two non-rotating quadrupole systems of forces

with axes of symmetrymaking an angle of 45
◦
with one another, and oscillating a quarter period

out of phase. Each of these systems causes a steady-state forced oscillation of the oceanic water.

In a simplified model of the ocean as a water shell of equal depth this oscillation is a standing

wave of elliptical shape whose amplitude and phase are determined by the well-known steady-

state solution to the equation of a linear oscillator. The tidal wave circulating around the globe

is a superposition of these two standing waves.

The real-world picture of tides at a certain location is much more complex not only due to

interference of the sun-induced and moon-induced tidal forces, but, more importantly, due to

the continents with complex details of coastal geometry and depth variations over a complex

sea floor. The real ocean, compared to the simplified model adopted above, is a very complex

dynamical system. This makes a purely theoretical calculation of its response to the well-known

tidal forces extremely difficult.

APPENDIX I. TIDAL FORCES AT AN ARBITRARY POINT NEAR THE EARTH
To emphasize the physics underlying the origin of tide-generating forces, we consider the

vectorial addition of the relevant forces instead of the standard derivation that uses the tide-

generating potential, for which the mathematics is somewhat simpler.
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To obtain a general mathematical expression for the sun-induced tidal force at an arbitrary

point H over the earth (see Figure 3), we introduce the radius vector r of this point relative
to the center of the earth, and its radius vector rs = R + r relative to the center of the sun
S, where R is the radius vector of the earth relative to the sun. The tidal force Ftid experi-

enced by a body of mass m at point H (in the non-inertial geocentric frame) is the resultant

of its gravitational attraction Fgr = −GmMsunrs/r 3
s to the sun and the pseudo force of inertia

Fin =−ma0 =GmMsunR/R3
:

Ftid = Fgr +Fin =−GmMsun

(
rs

r 3
s
− R

R3

)
. (13)

Next we express rs in Eq. (13) as the sum R+r and calculate the square of rs taking into account

that r ¿ R:

r 2
s = (R+ r)2 = R2 +2(R · r)+ r 2 ≈ R2

(
1+2

(R · r)

R2

)
.

Therefore,

1

r 3
s
≈ 1

R3

(
1−3

(R · r)

R2

)
.

Substituting this expression for 1/r 3
s into Eq. (13) yields:

Ftid ≈−G
mMsun

R3

[
(R+ r)

(
1−3

(R · r)

R2

)
−R

]
≈−G

mMsun

R3

[
r−3R

(R · r)

R2

]
. (14)

We note that the main contributions of Fgr and Fin to Ftid, whose magnitudes are inversely

proportional to R2
, cancel in Eq. (14). This cancelation corresponds to the aforementioned state

of weightlessness that we experience on the spaceship ‘Earth’ with respect to the sun’s gravity.

The magnitude of the remaining in Eq. (14) force is inversely proportional to R3
, that is, to cube

of the distance from the sun (generally, from the celestial body which is the source of the tidal

force).

For the points A and B considered in elementary treatment of the tidal forces in Section 2.1
(see Figure 1), radius vector r is perpendicular to R and the scalar product R · r in Eq. (14) is
zero. Hence at these points the tidal force is directed opposite to r (that is, vertically downward)
and its magnitude equals GmMsunr /R3

. For the points Z and N the tidal force, according to

Eq. (14), is directed along r (that is, vertically upward), and its magnitude 2GmMsunr /R3
is two

times greater than at points A and B . We see that at these four points, the general result given
by Eq. (14) agrees with the above presented simpler calculations, see Eqs. (1) and (2).

APPENDIX II. THE AMPLITUDE AND PHASE LAG OF THE TIDAL WAVE
Next we present a mathematical description of forced steady-state oscillations of water in

the equatorial canal under the oscillating tidal forces. Each of the partial forced oscillations of

the water surface in the canal (each normal mode) can be described by a differential equation

of a linear oscillator. Let q1(t ) be the normal coordinate describing the first forced oscillation
whose elliptical shape is characterized by a major axis oriented along θ = 0, that is, along the
earth-sun (earth-moon) line (and in the perpendicular direction after a half period), and let q2(t )
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be the normal coordinate describing the second oscillation with the axis inclined through 45
◦

with respect to the earth-sun line. A disturbance of the water surface caused by the first oscil-

lation can be described by ∆r1(θ, t ) = q1(t )cos(2θ), which gives the small vertical displacement
of the surface at an arbitrary point (r0,θ) of the equator. Similarly, the second oscillation causes
a distortion of the surface described by ∆r2(θ, t ) = q2(t )sin(2θ). The forced oscillations experi-
enced by the normal coordinates q1(t ) and q2(t ) are periodic (steady-state) partial solutions of
the two differential equations:

q̈1 +2γq̇1 +ω2
0q1 = ω2

0a cosωt ,

q̈2 +2γq̇2 +ω2
0q2 = ω2

0a sinωt . (15)

Here ω0 is the natural frequency of the corresponding mode (ω0 = 2π/T0 = 2
√

g h/r0), γ is

the damping constant, ω = 2Ω (twice the angular velocity Ω of the earth’s daily rotation) is the
driving frequency, and a is the magnitude of the equilibrium distortion of the ocean surface
under the static system of tidal forces (that is, the distortion for the hypothetical planet whose

axial rotation is synchronized with its orbital revolution). The theoretical value of a is given by
Eq. (11), Section 2.3. Although the values of a and of ω = 2Ω that characterize the driving tidal
forces are fairly well known, the situation is quite different regarding the values of ω0 and γ,

which characterize the ocean as a dynamical system.

In the hypothetical limiting case of extremely slow rotation of the earth, the steady-state

solution of Eqs. (15) is q1(t ) = a cosωt = a cos2Ωt , q2(t ) = a sinωt = a sin2Ωt . This solution de-
scribes the quasi-static elliptical distortion whose axis follows adiabatically the slowly rotating

earth-sun (earth-moon) line. The major axis of the ellipse at any moment is oriented along this

line. The displacement of the water level from its mean position in the equatorial plane in this

limiting case is given by:

∆r (θ, t ) =∆r1(θ, t )+∆r2(θ, t ) = q1(t )cos2θ+q2(t )sin2θ =
a(cos2Ωt cos2θ+ sin2Ωt sin2θ) = a cos2(Ωt −θ). (16)

To find the distortion of the water surface for an arbitrary value of ω, we can use the well-

known relevant steady-state solutions to Eqs. (15) for the normal coordinates q1(t ) and q2(t ):

q1(t ) = q0 cos(ωt −δ), q2(t ) = q0 sin(ωt −δ), (17)

where their common amplitude q0 and phase lag δ are given by the following expressions:

q0 =
ω2

0a√
(ω2

0 −ω2)2 +4γ2ω2
, tanδ= 2γω

ω2
0 −ω2

. (18)

Therefore the resulting distortion of the water surface under the tidal forces is given by

∆r (θ, t ) =∆r1(θ, t )+∆r2(θ, t ) = q1(t )cos2θ+q2(t )sin2θ =
q0[cos(2Ωt −δ)cos2θ+ sin(2Ωt −δ)sin2θ] = (19)

q0 cos2(Ωt −δ/2−θ).

We see from Eq. (19) that at any time t the maximum of the tidal wave circulating around
the earth (high water) is located at the position defined by the angle θmax =Ωt −δ/2. That is, the
position of this maximum lags behind the sun (moon) by the angle δ/2. If γ¿ω, it follows from
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Eq. (19) that this retarding angle is almost zero for the case ω<ω0. In other words, the marine

tide would be nearly the equilibrium tide with the high-water time coinciding with culminations

of the sun (moon) if the natural period of the circulating wavewere less than the 12-hour driving

period (that is, if T0 < T ). However, for our model of the ocean, we estimate the natural period
to be approximately 30 hours. Therefore the situation corresponds to ω>ω0 (T < T0), when the

steady-state forced oscillations occur nearly in the opposite phase relative to the driving force.

In this case the tide should be inverted with respect to the equilibrium one. The retarding angle

δ/2 approaches π/2 according to Eq. (19), which means that for a given equatorial point, the
high water occurs when the sun (moon) is almost at the horizon (rather than at zenith or nadir).

At any given place on the equator, it follows from Eq. (19) that the water level (above the

average value) varies with time t according to z(t ) = q0 cos(2Ωt−δ), where t = 0 corresponds to
the culmination of the sun (moon) at the place in question. We can expect that for the model of

a water canal of uniform depth, the value of q0 given by Eq. (18) is more or less reliable because

hydrodynamics allows us to estimate the natural frequencyω0 = 2π/T0 = 2
√

g h/r0 by using the

known speed v = √
g h of very long gravitational waves. The situation is far from resonance.

Thismeans that the amplitude of the tidal wave in the canal (and in the open ocean) has the same

order of magnitude as the static (equilibrium) distortion given by the above estimates (Eq. (11),

Section 2.3).

However, considerable uncertainty is related to the damping factor γ. If we assume that the

damping is small (γ ¿ ω0), we can conclude that the orientation of the tidal bulges deviates

only slightly from the line perpendicular to the moon-earth line, but the particular value of this

deviation remains indefinite.
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ОКЕАНСКИЕ ПРИЛИВЫ:
ФИЗИЧЕСКОЕ ОБЪЯСНЕНИЕ И МОДЕЛИРОВАНИЕ
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Аннотация
Кратко обсуждаются встречающиеся в литературе распространенные заблуждения

о приливах. Предлагается физически прозрачный простой, но строгий вывод выра-

жений для приливообразующих сил, сопровождающийся динамической интерпре-

тацией приливной волны в упрощенной модели океана как водной оболочки рав-

ной глубины, полностью покрывающей земной шар. Новизна нашего подхода за-

ключается в представлении приливообразующих сил в виде двух квадрупольных

систем осциллирующих сил, оси симметрии которых составляют угол 45◦ друг с дру-
гом. Динамическая реакция океана на эти зависящие от времени силы рассматрива-

ется как стационарное вынужденное колебание линейной системы. Изложение рас-

считано на широкий круг читателей, включая энтузиастов, интересующихся этим

явлением. Разработан комплекс моделирующих программ, облегчающих понима-

ние явления приливов, представляющего большой интерес из-за его космической

природы.

Ключевые слова: приливные силы, неинерциальные системы отсчета, приливные

вздутия, вынужденные колебания океана, приливные волны, фазовое запаздыва-

ние.
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