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A simple qualitative physical explanation is suggested for the phenomenon of dynamic stabilization
of the inverted rigid planar pendulum whose pivot is constrained to oscillate with a high frequency
in the vertical direction. A quantitative theory based on the suggested approach is developed. A
computer program simulating the physical system supports the analytical investigation. The
simulation reveals subtle details of the motion and aids the analytical study of the subject in a
manner that is mutually reinforcing. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION: THE PHYSICAL SYSTEM

An ordinary rigid planar pendulum suspended in the uni-
form gravitational field is a very useful and versatile physical
model famous first of all for its outstanding role in the his-
tory of physics. The pendulum is also interesting as a para-
digm of contemporary nonlinear physics and, more impor-
tantly, because the differential equation of the pendulum is
frequently encountered in various branches of modern phys-
ics. For example, the mathematical relationships associated
with the limiting motion of a frictionless pendulum, i.e., the
motion with the total energy that equals the potential energy
in the inverted position~this motion delimits swinging from
rotation in a full circle, see, e.g., Ref. 1!, play an important
role in the theory of solitons, in the problem of super-
radiation in quantum optics, and in the theory of Josephson
effects in weak superconductivity. Thus, the pendulum is a
rather simple classic nonlinear mechanical device which
models many physical systems. Mechanical analogies can be
very useful in gaining an intuitive understanding of complex
phenomena.

Various kinds of motion of the pendulum whose axis is
driven periodically in the vertical direction are of special
interest. Depending on the frequency and amplitude of this
constrained oscillation of the suspension point, this seem-
ingly simple system exhibits a rich variety of nonlinear phe-
nomena characterized by amazingly different types of mo-
tion. Some modes of such a parametrically forced pendulum
are quite simple indeed and agree well with our intuition,
while others are very complicated and counterintuitive.

When the external frequency is approximately twice the
natural frequency of the pendulum, the lower state of equi-
librium becomes unstable, and the system leaves it, execut-
ing oscillations whose amplitude increases progressively,
provided the driving amplitude exceeds some threshold
value. This phenomenon is called parametric resonance. In
contrast to the case of ordinary resonance caused by a direct
influence of some periodic external force, over the threshold
friction is unable to restrict the growth of parametrically ex-
cited oscillations. The growth of the amplitude is restricted
because the period of natural oscillations increases with the
amplitude due to nonlinear properties of the pendulum: The
resonance conditions, being fulfilled for small amplitudes,
become violated as the amplitude increases. Parametric reso-
nance is possible when two driving cycles occur during ap-
proximately one, two, three, and any other integer number of
natural periods. With increasing friction, parametric reso-
nances of higher orders become weaker and disappear.

Another possible kind of regular motion is a synchronized
nonuniform unidirectional rotation in a full circle with a pe-
riod that equals either the period of the constrained motion of
the axis or an integer multiple of this period. More compli-
cated regular modes of the parametrically forced pendulum
are formed by combined rotational and oscillating motions
synchronized~locked in phase! with oscillations of the pivot.
Different competing modes can coexist at the same values of
the driving amplitude and frequency. Which mode is acti-
vated depends on the starting conditions.

The behavior of the pendulum whose axis is forced to
oscillate with a frequency from a certain interval~and with
large enough amplitude! can be irregular, chaotic. The pen-
dulum makes several revolutions in one direction, then
swings for a while with permanently changing amplitude,
then rotates again in the former or in the opposite direction,
and so forth. For other values of the driving frequency and/or
amplitude, the chaotic motion can be purely oscillatory,
without revolutions. The pendulum can make, say, one oscil-
lation during each of two driving periods, but in each next
cycle the motion~the phase orbit! is slightly ~and randomly!
different from the previous cycle. At first sight such essen-
tially unpredictable, random behavior contradicts the well-
known uniqueness of solution to a differential equation of
motion with given initial conditions. Within the scope of
classical mechanics which naturally includes the concept of
mechanical determinism, chaotic behavior of simple dynami-
cal systems is considered admissible only as a result of ex-
ternal random perturbations of the system, i.e., as something
introduced from the outside, from the environment. The dis-
covery of random behavior and intrinsic irregular, chaotic
oscillations in deterministic dynamical systems of different
nature ~physical, chemical, biological! is one of the most
prominent recent scientific sensations. It is remarkable that
such a simple mechanical system as a pendulum whose pivot
is forced to oscillate regularly can exhibit under some con-
ditions a chaotic behavior, illustrated by a strange attractor in
the phase plane. Chaotic modes of the parametrically driven
pendulum have been intensively investigated over the past
decades.2–7

Another well-known interesting feature in the behavior of
a rigid pendulum whose suspension point is constrained to
vibrate with a high frequency along the vertical line is the
dynamic stabilization of its inverted position. When the fre-
quency and/or the amplitude of these vibrations are large
enough~the necessary conditions are determined in the fol-
lowing!, the inverted pendulum shows no tendency to turn
down. Moreover, at small and moderate deviations from the
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vertical inverted position the pendulum tends to return to it.
Being deviated, it can execute relatively slow oscillations
about the vertical line on the background of rapid oscillations
of the suspension point. An example of the graphs of such
oscillations of the inverted pendulum obtained in the com-
puter simulation of the motion is shown in Fig. 1. We note
how the rapid vibrations superimpose on the slow oscillation
and distort its smooth shape. In the presence of friction these
slow oscillations gradually damp away, and the pendulum
eventually comes to the vertical inverted position.

This type of dynamic stability probably was first pointed
out by Stephenson almost a century ago.8 In 1951 such ex-
traordinary behavior of the pendulum was explained and in-
vestigated experimentally in detail by Pjotr Kapitza,9 and the
corresponding physical device is now widely known in Rus-
sia as ‘‘Kapitza’s pendulum.’’ Simple hand-made devices are
often used to show in lectures this fascinating phenomenon
of classical mechanics. An old electric shaver’s mechanism
can serve perfectly well to force the pivot of a light rigid
pendulum vibrating with a high enough frequency and suffi-
cient amplitude to make the inverted position stable. Such
demonstrations inevitably evoke a vivid response and some
kind of bewilderment, perplexing and even astonishing those
students who see it for the first time.

After Kapitza, this simple but very curious and intriguing
system attracted the attention of many researchers, and the
theory of the phenomenon may seem to be well elaborated
~see, e.g., Ref. 10!. Nevertheless, more and more new fea-
tures in the behavior of this apparently inexhaustible system
are reported regularly. Many related papers have been pub-
lished in recent years in the American Journal of
Physics.11–20

However, in the abundant literature on the subject~a vast
bibliography can be found in Ref. 21! the author failed to
discover a simple and clear interpretation of this interesting
phenomenon. Understanding the dynamic stabilization of an
inverted pendulum is certainly a challenge to our intuition.
The principal aim of this paper is to present a quite simple
qualitative physical explanation of the phenomenon. We fo-
cus also on an approximate quantitative theory~leading to
the well-known concept of the effective potential for the
slow motion of the pendulum! which can be developed on
the basis of the suggested approach to the problem. Finally,
we show that the loss of dynamic stability at large ampli-

tudes of the pivot is closely related to the commonly known
conditions of parametric instability of the noninverted pen-
dulum.

II. PHYSICAL REASONS FOR STABILITY OF THE
INVERTED PENDULUM WHOSE PIVOT IS
OSCILLATING AT HIGH FREQUENCY

For simplicity we consider a light rigid rod of lengthl with
a heavy small bob of massm on its end and assume that the
rod has zero mass, so that all the mass of the pendulum is
concentrated in the bob. The force of gravitymg provides a
restoring torque—mgl sinw whose value is proportional to
the sine of angular deflectionw of the pendulum from the
equilibrium position. With the suspension point at rest, this
torque makes the deviated pendulum swing about the lower
stable equilibrium position. When the axis of the pendulum
is constrained to move with acceleration along the vertical
line, it is convenient to analyze the motion in the noninertial
reference frame associated with this axis. Doing so, we must
imply that due to the acceleration of this frame of reference
there is one more force exerted on the pendulum, namely the
force of inertia2mz̈, wherez(t) is the time-dependent ver-
tical coordinate of the axis. The torque of this force
2mz̈l sinw must be added to the torque of the gravitational
force.

Let the axis of the pendulum be forced to execute a given
harmonic oscillation along the vertical line with a frequency
v and an amplitudea, i.e., let the constrained motion of the
axis be described by

z~ t !5a sinvt. ~1!

The force of inertiaF in(t) exerted on the bob in the non-
inertial frame of reference also has a sinusoidal dependence
on time:

F in~ t !52 mz̈~ t !5mav2 sinvt. ~2!

This force of inertia is directed downward during the time
intervals for whichz(t)5a sinvt ,0, i.e. when the axis is
below the middle point of its oscillations. We see this di-
rectly from the equation forF in(t), Eq.~2!, whose right-hand
side depends on time as sinvt, that is, exactly as thez coor-
dinate of the axis@see Eq.~1!#. Therefore during the corre-

Fig. 1. Graphs of the angular deflection from the in-
verted~upside-down! position and of the angular veloc-
ity for the pendulum whose axis is oscillating with a
high frequency. The graphs are obtained by a numerical
integration of the exact differential equation for the mo-
mentary angular deflectionw(t), Eq. ~11!.
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sponding half-period of the oscillation of the pivot, this ad-
ditional force is equivalent to some strengthening of the
force of gravity. During the other half-period the axis is
above its middle position (z(t)5a sinvt.0), and the action
of this additional force is equivalent to some weakening of
the gravitational force. When the frequency and/or amplitude
of the pivot are large enough~whenav2.g!, for some part
of the period the apparent gravity is even directed upward.

On the basis of this approach, taking into account the pe-
riodic variations of the apparent gravity, we can easily ex-
plain, say, the physical reason for the ordinary parametric
swinging of the pendulum when its pivot is driven vertically
with a frequency approximately twice the frequency of natu-
ral oscillations.

In the case of rapid oscillations of the axis, the mean value
of the force of inertia, averaged over the short period of these
oscillations, is zero, but the value of itstorqueaveraged over
the period about the axis is not zero. Next we show why.
This nonzero mean torque of the force of inertia explains the
pendulum stabilization in the inverted position.

Let us begin with the case in which the rod of the pendu-
lum is oriented horizontally, i.e., at the right anglec5p/2 to
the direction of oscillations of the axis@Fig. 2~a!#.

To better understand the influence of the force of inertia
upon the system, we first forget for a while about the force of
gravity. ~Explaining the phenomenon in lectures, it is pos-
sible to ‘‘switch off’’ gravity for a while simply by changing
the orientation of the vibrating device mentioned earlier, so
that the pendulum’s axis of rotation is vertical. Then the rigid
pendulum occurs in a state of indifferent equilibrium at any
orientation in the horizontal plane until the axis is vibrating.!
If the bob has zero initial velocity, in the inertial reference
frame in the absence of gravity it stays practically at the
same level while the axisA oscillates between the extreme
points 1 and 2 and the rod turns down and up through a small
angle, as shown in the upper part of Fig. 2~a!. In the nonin-
ertial frame of reference associated with the oscillating axis,
the same motion of the rod is shown in the lower part of Fig.
2~a!: The bob of the pendulum moves up and down along an
arc of a circle and occurs in positions 1 and 2@the lower part
of Fig. 2~a!# at the instants at which the oscillating axis
reaches its extreme positions 1 and 2, respectively@the upper
part of Fig. 2~a!#. In position 1 the force of inertiaF1 exerted
on the bob is directed downward, and in position 2 the force
F2 of the same magnitude is directed upward. The arm of the
force in positions 1 and 2 is the same, therefore the torque of
this force, averaged over the period of oscillations, is zero. In
the absence of gravity this orientation of the pendulum~per-

pendicularly to the direction of oscillations! corresponds to a
dynamic equilibrium position~an unstable one, as we shall
see later!.

Now let us consider the case in which on average the rod
is deflected through an arbitrary anglec from the direction
of oscillations, and the axis oscillates between extreme
points 1 and 2, as shown in the upper part of Fig. 2~b!. In the
noninertial frame of reference associated with the oscillating
axis, the bob moves at these oscillations between points 1
and 2 in the lower part of Fig. 2~b! along an arc of a circle
whose center coincides with the axisA of the pendulum. We
note that the rod has the same simultaneous orientations in
both reference frames at instant 1 as well as at instant 2.
When the axis is displaced downward~to position 1! from its
midpoint, the force of inertiaF1 exerted on the bob is also
directed downward. In the other extreme position 2 the force
of inertiaF2 has an equal magnitude and is directed upward.
However, now the torque of the force of inertia in position 2
is greater than in position 1 because thearm of the force in
this position is greater. Therefore on average the force of
inertia creates a torque about the axis that tends to turn the
pendulum upward, into the vertical inverted position, in
which the rod is parallel to the direction of oscillations. Cer-
tainly, if the pendulum makes an acute angle with respect to
the downward vertical position, the mean torque of the force
of inertia tends to turn the pendulum downward.

Thus, the torque of the force of inertia, averaged over a
period of oscillations, tends to align the pendulum along the
direction of constrained oscillations of the axis. The right-
hand side~b! of Fig. 2 presents an utterly simple and clear
explanation to the origin of this torque. Kapitza9 called this
torquevibrational, but we can also call itinertial, because its
origin is related to the force of inertia that arises due to the
constrained rapid vibrations of the axis. For given values of
the driving frequency and amplitude, this torque depends
only on the angle of the pendulum’s deflection from the di-
rection of the pivot’s vibration. This mean inertial torque
does not depend on time explicitly, and its influence on the
pendulum can be considered exactly in the same way as the
influence of other ordinary external torques, such as the
torque of the gravitational force. The inertial torque gives the
desired explanation for the physical reason of existence of
the two stable equilibrium positions that correspond to the
two preferable orientations of the pendulum’s rod along the
direction of the pivot’s vibration. With gravity, the inverted
pendulum is stable with respect to small deviations from this
position provided the mean torque of the force of inertia is
greater than the torque of the force of gravity.

III. AN APPROXIMATE QUANTITATIVE THEORY
OF THE INVERTED PENDULUM

Now we can determine the quantitative conditions, which
provide the dynamic stabilization of the inverted equilibrium
position in the presence of the force of gravity. Rapid verti-
cal vibrations of the axis make the inverted position stable if
at small deflections from this position the torque of the force
of inertia, averaged over the period of rapid oscillations~this
torque tends to return the pendulum to the inverted position!,
is greater in magnitude than the torque of the gravitational
force that tends to tip the pendulum down.

We can consider the motion of the pendulum whose axis
is vibrating with a high frequency as a superposition of two
components: a ‘‘slow’’ or ‘‘smooth’’ component, whose

Fig. 2. The forces of inertia exerted on the pendulum in the noninertial
reference frame at the extreme positions 1 and 2 of the oscillating axisA.
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variation during a period of constrained vibrations is small,
and a ‘‘fast’’ ~or ‘‘vibrational’’ ! component. Let’s imagine
an observer who doesn’t notice~or doesn’t want to notice!
the vibrational component of this compound motion. If this
observer uses, for example, a stroboscopic illumination with
a short interval between the flashes that equals the period of
constrained vibrations of the pendulum’s axis, he/she can see
only the slow component of the motion. Our principal inter-
est is to determine this slow component.

When the rod of the pendulum is deflected from the down-
ward vertical position on the average through an anglec, the
instantaneous valuew(t) of the deflection angle is subjected
to an additional rapid almost sinusoidal oscillation with the
frequencyv about this average valuec5^w(t)& because of
the constrained oscillation of the axis. This can be clearly
seen from the plots of the angular deflection and velocity
~Fig. 1!. Therefore we can try to search for the instantaneous
angle of deflectionw(t) as the sum of a slowly varying func-
tion c(t)5^w(t)& and a fast termd(t) whose mean value is
zero. This additional angled(t) oscillates with the high fre-
quencyv with an amplitude proportional to the sine of the
momentary value ofc(t):

w~ t !5c~ t !1d~ t !5c~ t !2
z~ t !

l
sinc

5c~ t !2
a

l
sinc sinvt. ~3!

Herea is the amplitude of forced vibrations of the axis andl
is the length of the pendulum.~When the axis is over its
middle position,z is positive and the additional angled
52(z/ l )sinc is negative, ifc.0.! Later on we shall find
the differential equation for this unknown slowly varying
function c(t) that describes the smooth motion of the pen-
dulum, averaged over the period of rapid oscillations.

The torque of the force of inertia depends on the momen-
tary value of this forcemav2 sinvt, Eq. ~2!, and on the sine
of the anglew. The oscillations of the axis cause only small
deviations of the momentary deflection anglew from its av-
erage valuec ~i.e., d(t)!1 for all t!, and so for the sine of
the deflection angle we can write the following approximate
expression:

sinw5sin~c1d!'sinc1d cosc. ~4!

With the help of this equation, we can find the approxi-
mate value of the gravitational torque about the point of
suspension~about the axis of the pendulum!, averaged over
the period of rapid oscillations of the axis:

^2mgl sinw&52mgl̂ sin~c1d!&52mgl sinc, ~5!

because the average value ofd(t) is zero:^d(t)&50. We see
that the mean torque of the gravitational force is the same as
in the case of a pendulum with the immovable suspension
point: The oscillating second term in the expansion for the
momentary angle, Eq.~4!, being multiplied by a constant
gravitational force, gives no contribution to the mean torque.
However, when we take the time average for the torque of
the oscillating force of inertia, the first term in the expansion
~4! vanishes, but the oscillating second term gives a nonzero
contribution. This occurs by virtue of the identical sinusoidal
dependence on time both of the force of inertiaF in(t) given

by Eq.~2! and ofd(t) whose value determines the oscillating
arm of this force:

^F in~ t !l sin~c1d!&52mav2l ~a/ l !cosc sinc^sin2 vt&

52 1
2ma2v2 cosc sinc, ~6!

because the average value of the sine squared equals 1/2:
^sin2 vt&51/2. Forc.p/2 the average value of the torque of
the force of inertia is positive: If the pendulum makes an
acute angle with the upward vertical direction, this torque
tends to turn the pendulum up. Comparing the right-hand
sides of Eqs.~5! and~6!, we see that the torque of the force
of inertia can exceed in magnitude the torque of the gravita-
tional force tending to tip the pendulum down, when the
following condition is fulfilled:

a2v2.2gl. ~7!

Thus, the inverted position of the pendulum is stable if the
maximal velocityva of the vibrating axis is greater than the
velocity A2gl attained by a body during a free fall from the
height that equals the pendulum lengthl. We can write this
criterion of stability in another form, using the expression
v0

25g/ l for the frequencyv0 of small natural oscillations of
the pendulum in the absence of forced vibrations of the axis.
Substitutingg5 lv0

2 in Eq. ~7! we get

a

l

v

v0
.&. ~8!

According to Eq.~8!, the product of the dimensionless
normalized amplitude of forced oscillations of the axisa/ l
and the dimensionless~normalized! frequency of these oscil-
lationsv/v0 must exceed the square root of 2. For instance,
for the pendulum whose lengthl 520 cm and the frequency
of forced oscillations of the axisf 5v/2p5100 Hz, the am-
plitude a must be greater than 3.2 mm. To provide the dy-
namic stabilization of the inverted pendulum within some
finite interval of the angles of deflection from the vertical
position, the product of the normalized amplitude of forced
oscillations of the axis and the normalized frequency must be
greater than& by a finite value. For a physical pendulum,
the condition of dynamic stability in the inverted position is
expressed by the same equation~7! or ~8! provided we imply
by the quantityl the reduced length of the pendulumI /md,
whereI is the moment of inertia with respect to the axis of
rotation,m is the mass, andd is the distance between the axis
and the center of mass. We note that the criterion~7! or ~8! is
independent of friction.

The critical minimum value of the product of the driving
amplitude and frequencyav found above, Eq.~8!, agrees
with the lower boundary of stability of the inverted pendu-
lum obtained by approximating the exact nonlinear equation
of motion by the Mathieu equation, the solutions of which
are widely documented in the extensive literature concerning
the problem~see, e.g., Ref. 11, 12, or 13!. However, the
investigation based on the Mathieu equation and infinite
Hill’s determinants gives little physical insight into the prob-
lem and, more importantly, is restricted to motion within
small angles from the vertical. On the contrary, the above
explanation clearly shows the physical reason for the dy-
namic stabilization of the inverted pendulum and is free from
the restriction of small angles.

In particular, on the basis of the approach developed in
this paper, for given values of the frequencyv and amplitude
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a of forced oscillations of the axis, we can find the maximal
admissible angular deflection from the inverted vertical po-
sition umax5p2c0 for which the pendulum will return to this
position, even whenumax is almost as large asp/2. To do
this, we should equate the right-hand sides of Eqs.~5! and
~6! that determine the average values of the torque of the
gravitational force which tends to tip the pendulum down
and of the torque of the force of inertia which tends to return
the pendulum to the inverted position:

cosumax52cosc05
2gl

a2v2 52S v0

v

l

aD 2

. ~9!

This expression for an admissible angular excursion from
the inverted equilibrium position is valid for arbitrarily large
values ofu. The greater the product of the frequency and the
amplitudeva of constrained vibrations of the axis, the closer
the angleumax to p/2. Being deflected from the vertical po-
sition by an angle that does not exceedumax, the pendulum
will execute relatively slow oscillations about this inverted
position. This slow motion occurs both under the mean
torque of the force of inertia and the force of gravity. Rapid
oscillations with the frequency of forced vibrations of the
axis superimpose on this slow motion of the pendulum. With
friction, the slow motion gradually damps, and the pendulum
wobbles up settling eventually in the inverted position.

Similar behavior of the pendulum can be observed when it
is deflected from the lower vertical position. But in this case
the frequency of slow oscillations is greater than for the in-
verted pendulum. Indeed, for the hanging down pendulum
the averaged torque of the force of inertia tends to return the
pendulum to the lower vertical position together with the
torque of the gravitational force. Therefore the frequency of
these slow oscillations is greater than both the frequency of
slow oscillations in the absence of gravity and the frequency
of natural oscillations in the absence of forced vibrations of
the axis. The clock with a pendulum subjected to a fast ver-
tical vibration will always be ahead of time. The frequencies
vup andvdown of small slow oscillations about the inverted
position and the lower vertical position are given by

vup
2 5

a2v2

2l 2 2v0
2, vdown

2 5
a2v2

2l 2 1v0
2. ~10!

If we put v050 into these formulas, we get the expression
vslow5a/( l&)v for the frequency of small slow oscillations
of the pendulum with vibrating axis in the absence of the
gravitational force. These oscillations can occur about either
of the two equivalent stable equilibrium positions located
opposite one another along the direction of forced vibrations
of the axis. For vertical vibrations of the axis in the field of
gravity, the force of gravity increases the average restoring
torque of the force of inertia~and consequently the frequency
of slow oscillations! about the lower equilibrium position,
and the force of gravity decreases the average restoring
torque~and hence the frequency of slow oscillations! about
the upper equilibrium position. We can illustrate these results
concerning the periods of slow oscillations about the two
vertical positions with the graphs in Fig. 3, obtained in a
simulation experiment on the computer.

The simulation is based on a numerical integration of the
exact differential equation for the momentary angular deflec-
tion w(t). This equation includes, besides the torque of the
force of gravity, the instantaneous~not averaged over the fast
period! value of the torque exerted on the pendulum by the
force of inertia that depends explicitly on timet:

ẅ12gẇ1v0
2S 12

a

l

v2

v0
2 sinvt D sinw50. ~11!

The second term takes into account the braking frictional
torque, assumed to be proportional to the momentary angular
velocity ẇ in the mathematical model of the simulated sys-
tem. The damping constantg is related to the dimensionless
quality factorQ characterizing the role of viscous friction:
Q5v0/2g.

It is worth mentioning that the results of this section con-
cerning the smooth behavior of the pendulum with a rapidly
vibrating axis are found without the differential equation for
the system under consideration. Being obtained by a decom-
position of motion on slow oscillations and rapid vibrations
with the driving frequency, these results are approximate and
valid when the amplitude of constrained vibration of the axis
is small compared to the pendulum’s length (a! l ). More-
over, in the presence of gravity the driving frequency must
be much greater than the frequency of small natural oscilla-
tions of the pendulum (v@v0). These restrictions mean that

Fig. 3. The graphs of oscillations of the pendulum
about the lower and upper equilibrium positions, re-
spectively. The graphs are obtained by a numerical in-
tegration of the exact differential equation for the mo-
mentary angular deflectionw(t), Eq. ~11!.
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we should not expect from the approach discussed here to
give an exhaustive description of the parametrically driven
pendulum in all cases.

In particular, within certain ranges of the system param-
eters~in the intervals of parametric instability! the lower po-
sition of the pendulum becomes unstable, as we already
mentioned earlier. However, parametric resonance, as well as
the modes of chaotic behavior, occurs at such driving fre-
quencies~for the principal parametric resonancev'2v0!
that do not satisfy the conditions of applicability of the ap-
proach used above. Therefore we cannot require from this
approach an explanation of chaotic modes and parametric
instability of the noninverted pendulum. This approach pre-
dicts well the lower bound of the stability of the inverted
pendulum, but does not yield the upper bound, which is
closely related to ordinary parametric resonance of the non-
inverted pendulum~see Sec. VII!.

IV. EFFECTIVE POTENTIAL FUNCTION FOR A
PENDULUM WITH THE AXIS VIBRATING
AT HIGH FREQUENCY

The approximate differential equation for the slow motion
of the pendulum can be written under the assumption that the
angular accelerationc̈(t) in this slow motion is determined
by the mean torqueN(c) exerted on the pendulum in the
noninertial frame of reference associated with its axis:

c̈52v0
2 sinc2

1

2

a2

l 2 v2 cosc sinc. ~12!

The mean torque on the right-hand side of Eq.~12! is
calculated approximately under the assumption that the
slowly varying angular coordinatec(t) is ‘‘frozen.’’ To fa-
cilitate interpretation of the slow motion described by this
nonlinear differential equation, we can introduce a potential
function U(c) that corresponds to the mean torqueN(c)
exerted on the pendulum. The torque is determined by the
derivative of this potential function:N(c)52dU(c)/dc.
The observer mentioned earlier who doesn’t notice the rapid
oscillating motion of the pendulum can simply consider that
the system moves in an effective potential fieldU5U(c).
Such a potential function that governs the smooth motion of
the pendulum averaged over the rapid oscillations was first
introduced by Landau,10 and derived by various different
methods afterwards~see, e.g., Ref. 16, 19, or 20!. From the
right-hand part of Eq.~12! we conclude that the effective

potential consists of two partsUgr(c) andU in(c) describing
the influence of the force of gravity and the force of inertia,
respectively:

U~c!5Ugr~c!1U in~c!

5mgl~12cosc!1 1
4ma2v2~12cos 2c!. ~13!

The graphs ofUgr(c) and U in(c) are shown in Fig. 4.
They both have a sinusoidal shape, but the period ofU in(c)
is just one half of the period ofUgr(c). Their minima atc
50 coincide, thus generating the principal minimum of the
total potential functionU(c)5U tot(c). This minimum corre-
sponds to the stable lower equilibrium position of the pen-
dulum. But the next minimum ofU in(c) is located atc
5p, whereUgr(c) has its maximum corresponding to the
inverted position of the pendulum.

If criterion ~7! or ~8! is fulfilled, the amplitude ofU in(c)
is greater than that ofUgr(c). Then the potential function
U(c) has ~in addition to the absolute minimum atc50
which corresponds to the lower equilibrium position! relative
minima at c56p. Both additional minima correspond to
the same inverted position of the pendulum. Oscillations of a
particle trapped in an additional minimum describe the be-
havior of the inverted pendulum. Slow small oscillations oc-
curring near the bottom of a potential well are almost har-
monic. The slopes of the shallow additional potential wells
are not as steep as the slopes of the principal well atc50.
Therefore the frequencyvup of slow small oscillations about
the inverted position is smaller than the frequencyvdown of
small oscillations within the principal well~about the lower
vertical position!, in accordance with the expressions ob-
tained earlier~10! and with the simulations represented by
the graphs in Fig. 3. Certainly, some subtle details in the
motion of the pendulum revealed by the simulations are lost
in our approximate analysis, which refers only to the slow
component of the investigated motion. Nevertheless, this
analysis allows us to clearly interpret principal features of
the physical system under consideration.

The maxima of the total potential energyU(c) are deter-
mined by Eq.~9!. The tops of the potential barrier between
the two wells occur at deflections6c0 (c0.p/2) from the
lower vertical position and6umax (umax,p/2) from the up-
per equilibrium position~Fig. 4!. At these positions of the
pendulum, the mean torque of gravity is balanced by the
mean torque of the force of inertia. However, these equilib-
rium positions are unstable: The slightest disturbance makes
the pendulum slowly slip down into one of the wells and
oscillate there moving from one slope to the other and back.
The pattern of such slow oscillations~averaged over the fast
period of constrained vibrations! is far from a sine curve.
The pendulum stays for a prolonged time near the summit of
the potential barrier at the utmost deflection, and then moves
rather fast toward the other utmost deflection to linger there
again before the backward fast motion. The simulation of
such a motion is shown in Fig. 5.

V. THE PENDULUM WITH A HORIZONTALLY
VIBRATING PIVOT

A similar approach can be applied to the pendulum whose
axis is forced to rapidly oscillate in the horizontal direction.
In this case the force of inertiaF in(t)52mẍ(t) is directed
horizontally. Its mean torque tends to align the pendulum

Fig. 4. Graphs of the gravitational potential energyUgr , mean potential
energyU in in the field of the force of inertia, and of the total potential
energyU tot(c) for the pendulum with an oscillating axis.
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horizontally, repelling it both from downward and inverted
vertical positions. The torque is determined by an expression
of the opposite sign compared with the similar Eq.~6! for the
vertical vibration:

^F in~ t !l cos~c1d!&5 1
2ma2v2 cosc sinc. ~14!

In the absence of gravitation this torque creates two stable
equilibrium positions located oppositely~at c56p/2! on
the same level with the axis. The force of gravity deviates
downward these symmetrical equilibrium positions.

The graphs of potential functionsUgr(c), U in(c), and
U tot(c) for this case are shown in Fig. 6. We can determine
the angle of deviationu of the pendulum from the horizontal
line in any of the lateral equilibrium positions@u5p/2
2c0 , where 6c0 are positions of the two symmetric
minima ofU tot(c), see Fig. 6# by equating the average value
of the torque of the force of inertia tending to align the pen-
dulum horizontally and the torque of the gravitational force
tending to turn the pendulum downward into the vertical
position:

sinu5
2gl

a2v2 . ~15!

The lateral equilibrium positions exist if the productva of
the frequency and amplitude of horizontal vibration of the
axis is greater thanA2gl. Therefore the existence of these
equilibrium positions at the horizontal vibration is deter-

mined by a criterion similar to condition~7! or ~8! that de-
termine stability of the inverted pendulum at vertical vibra-
tions of the axis.

Both vertical positions correspond to an unstable equilib-
rium of the pendulum. If we gradually diminish the fre-
quencyv of forced horizontal oscillations of the axis or their
amplitudea ~or bothv anda!, then, as we can see from Eq.
~15!, the angleu increases and the lateral stable equilibrium
positions deviate more and more downward. They disappear
at a2v2<2gl merging with the lower vertical equilibrium
position, which then becomes stable.

An example of oscillations of the pendulum whose axis is
driven with a high frequency in the horizontal direction is
shown in Fig. 7. In its slow motion, the pendulum crosses
several times the lower~unstable! vertical position, and
eventually is captured in one of the lateral equilibrium posi-
tions. We can see that in the reference frame associated with
the axis, after the slow motion has damped away, the pendu-
lum’s rod is not at rest but rather executes small rapid oscil-
lations with the frequency of the axis. The final state in the
phase plane is a small closed loop encircling the point that
corresponds to the bottom of the effective potential well.

This behavior of the pendulum can also be easily demon-
strated in a real experiment with the help of the simple de-
vice mentioned earlier. It is sufficient to turn it in the vertical
plane through an angle of 90° in order for the pendulum’s
axis be forced to vibrate horizontally.

Computer simulations of similar oscillations about one of
the lateral equilibrium positions in the absence of friction
have been reported in Ref. 19.

VI. MODES OF REGULAR SYNCHRONIZED
OSCILLATIONS OF THE PARAMETRICALLY
EXCITED PENDULUM

Next we briefly discuss the modes in which the driving
frequencyv is an integer multiplen of the frequencyvup ~or
vdown! of slow oscillations:v5nvup ~or v5nvdown!. Over
certain parts of the parameter space~the driving amplitude
and frequency within certain ranges!, the pendulum whose
axis is vibrating with a high frequency, instead of gradually
approaching the equilibrium position~either dynamically sta-
bilized inverted position or ordinary downward position! by
the process of damped slow oscillations, is trapped in an
n-periodic oscillation locked in phase to the rapid oscillation
of the axis. In such oscillations the phase trajectory repeats

Fig. 5. The graphs of oscillations of the pendulum
about the inverted position with maximal possible an-
gular excursion. The graphs are obtained by a numeri-
cal integration of the exact differential equation for the
momentary angular deflectionw(t), Eq. ~11!.

Fig. 6. Graphs of the gravitational potential energyUgr , mean potential
energyU in in the field of the force of inertia, and of the total potential
energyU tot(c) for the pendulum with a horizontally oscillating axis.
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itself aftern driving periodsT. Since the motion has period
nT, this phenomenon can be called a subharmonic resonance
of nth order. An example of such stationary oscillations
whose period equals eight periods of the axis is shown in
Fig. 8. For the inverted pendulum with a vibrating pivot,
periodic oscillations of this type were first described by
Acheson,22 who called them ‘‘multiple-nodding’’ oscilla-
tions.

The upper left-hand part of Fig. 8 shows the closed spatial
trajectory of the pendulum’s bob at these ‘‘quadruple-
nodding’’ oscillations. Such an extraordinary and even, at
first sight, counterintuitive behavior of the pendulum can
also be explained on the basis of the approximate approach
developed earlier in Secs. II and III.

First of all we note that these modes of regular periodic
oscillations are not specific to the inverted pendulum with a
vibrating pivot. Similar oscillations can be executed also~at
appropriate values of the driving parameters! about the ordi-
nary ~downward hanging! equilibrium position. Actually, the
origin of these modes is independent of gravity, because
such synchronized with the pivot ‘‘multiple-nodding’’ oscil-
lations can occur also in the absence of gravity about any of
the two equivalent dynamically stabilized equilibrium posi-
tions of the pendulum with a vibrating axis. Even the pendu-
lum with horizontally vibrating pivot can execute similar
n-periodic oscillations about each of the lateral equilibrium
positions. Synchronization of these modes with the pivot os-
cillations creates conditions for supplying the energy to the
pendulum needed to compensate for dissipation, and the
whole process becomes exactly periodic.

The approximate theory developed earlier in this paper
allows us to predict conditions at which thesen-periodic os-
cillations can occur. For small amplitudes of the slow oscil-

lations, the corresponding minimum of the effective potential
can be approximated by a parabolic well in which the
smooth component of motion is almost harmonic. To esti-
mate the frequency of this slow motion~the fundamental
frequency!, we can use Eq.~10!. As an example, we next
consider the pendulum in the absence of gravity, or, which is
essentially the same, in the limiting case of very high driving
frequenciesv@v0 (v/v0→`). In this limit both equilib-
rium positions~ordinary and inverted! are equivalent, and the
dimensionless driving amplitudea/ l is the only parameter to
be predicted as a required condition of the subharmonic reso-
nance of ordern ~of synchronized with the pivotn-periodic
oscillations of the pendulum!.

According to Eq.~10!, for v050 the frequency of slow
oscillations is given by vslow5a/( l&)v. For the
‘‘quadruple-nodding’’ mode the slow motion period equals
eight periods of the axis, so thatvslow5v/8, whencea/ l
5&/850.177. This value agrees well with the predictions
of a more sophisticated quantitative theory of these modes
based on the linearized differential equation of the system
~see the Appendix!, which gives for such period-8 small os-
cillations in the absence of gravity the following expression
for the driving amplitude:amin563/(32A130)l 50.173l . The
latter value agrees perfectly with the simulation experiment
in the limit of extremely small amplitudes.

Estimating conditions forn-periodic oscillations with the
help of Eq.~10!, we assume the slow motion of the pendu-
lum in the effective potential well to be simple harmonic,
which is true only if this motion is limited to within a small
vicinity of the bottom of this well. Therefore we get the
lower limit for the driving amplitude at whichn-periodic
oscillations of only infinitely small amplitude can occur.

Fig. 7. The graph of damped oscillations of the pendu-
lum whose axis is forced to rapidly vibrate in the hori-
zontal direction. The graph is obtained by a numerical
integration of the relevant exact differential equation
for the momentary angular deflectionw(t).

Fig. 8. The spatial path, phase orbit, and graphs of sta-
tionary oscillations with the period that equals eight pe-
riods of the oscillating axis. The graphs are obtained by
a numerical integration of the exact differential equa-
tion for the momentary angular deflectionw(t),
Eq. ~11!.
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Smooth nonharmonic oscillations of a finite angular excur-
sion that extends over the slanting slopes of the nonparabolic
effective potential well are characterized by a greater period
than the small-amplitude harmonic oscillations occurring
within the parabolic bottom of this well. Therefore large-
amplitude period-8 oscillations shown in Fig. 8~their swing
equals 80°! occur at a considerably greater value of the driv-
ing amplitude (a50.265l ).

The right-hand side of Fig. 8, alongside the graphs ofw(t)
andẇ(t) for the period-8 steady-state oscillations of the pen-
dulum, shows also their harmonic components and the
graphs of the pivot oscillations. The spectrum of these
period-8 oscillations is rich in harmonics. The fundamental
harmonic whose period equals eight driving periods domi-
nates in the spectrum. We may treat it as a subharmonic~as
an ‘‘undertone’’! of the driving oscillation. This principal
harmonic describes the smooth component of the compound
period-8 oscillation. Strange as it may seem from the first
sight, the harmonic with the driving frequency has zero am-
plitude, that is, this harmonic is absent in the spectrum. How-
ever, this peculiarity also can be easily explained on the basis
of the approach developed in this paper. In Eq.~3!, which
represents the angular position of the pendulumw(t) as a
superposition of slow and fast motions, the rapid component
with the driving frequency enters the expression forw(t)
being multiplied by the sine of the slow varying coordinate
c(t). Therefore the rapid component has varying amplitude,
which even changes its sign each time the pendulum crosses
the equilibrium position. Actually, the rapidly oscillating
second term in Eq.~3! is not a harmonic component in the
spectrum of the resulting periodic oscillation, because har-
monics of a periodic function are characterized by constant
amplitudes.

For small angular excursions of the pendulum occurring at
driving amplitudes slightly greater than the critical value
amin50.173l , the spectrum of period-8 oscillations is formed
by the principal harmonic~frequencyv/8!, and also by the
seventh and ninth harmonics whose frequencies~7v/8 and
9v/8! are close to the driving frequencyv. Their amplitudes
equal, respectively, 11.3% and 6.8% of the principal har-
monic amplitude. These theoretical values~see the Appen-
dix! agree perfectly with the corresponding simulation ex-
periment. For the oscillations of a large swing shown in Fig.

8, the amplitudes of these harmonics differ slightly from the
above values, and the contributions of the third, fifth, and
eleventh harmonics are also noticeable.

As noted earlier, in the case of period-8 oscillations of a
small swing the approach based on the effective potential
predicts for the driving amplitudea/ l a value of&/8
50.177, which is rather close to the exact low-amplitude
theoretical limit (a/ l 50.173). To obtain the slow oscilla-
tions of a smaller period~say, of six driving periods!, we
should increase the driving amplitude. Indeed, whenvslow

5v/6, Eq. ~10! yields a greater valuea/ l 5&/650.236.
However, for such period-6 oscillations this predicted value
agrees somewhat worse with the theory based on the linear-
ized equation of the system. This theory~see the Appendix!
gives for period-6 small oscillations in the absence of gravity
a value of the minimal driving amplitude ofamin

535/(18A74)l 50.226l , which perfectly agrees with the cor-
responding simulation experiment. Not surprisingly, for the
n-periodic oscillation with a smalln we cannot expect good
quantitative predictions from the effective potential approach
because in such cases the period of a ‘‘smooth’’ motion con-
tains only a few driving periods. The ‘‘rapid’’ component of
the motion here is not rapid enough for good averaging.

Nevertheless, the effective potential approach provides us
not only with a qualitative understanding of these complex
periodic modes, but also, being applicable to large-amplitude
motions, explains the coexistence of severaln-periodic
modes with differentn values at identical system parameters.
Figure 9 shows large-amplitude period-6 asymptotic oscilla-
tions without gravity obtained at the same valuea/ l 50.265
of the driving amplitude as the period-8 oscillations shown in
Fig. 8.

For a large angular excursion, the smooth motion occurs
in the nonparabolic effective potential well, in which the
period becomes longer if we increase the amplitude. By vir-
tue of this dependence of the period of nonharmonic smooth
motion on the swing, different modes~modes with different
values ofn! can coexist at the same amplitude of the pivot.
Indeed, the period of a large-amplitude slow oscillation can
be equal to, say, six driving periods, while the period of
oscillation with a somewhat greater amplitude in the same
nonparabolic potential well can be equal to eight driving

Fig. 9. The spatial path, phase orbit, and graphs of sta-
tionary oscillations with the period that equals six peri-
ods of the oscillating axis. The graphs are obtained by a
numerical integration of the exact differential equation
for the momentary angular deflectionw(t), Eq. ~11!.
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periods. Figures 8 and 9 show, respectively, the simulations
of such coexisting period-8 and period-6 modes, obtained at
the identical parameters of the system. That is, both smooth
motions occur in the same potential well. In which of these
competing modes the pendulum eventually is trapped in a
certain simulation, depends on the starting conditions. The
set of initial conditions that leads, after an interval in which
transients decay, to a given dynamic equilibrium~to the
same steady-state periodic motion, or attractor! in the limit
of large time, constitutes the basin of attraction of this attrac-
tor. The coexisting periodic motions in Figs. 8 and 9 repre-
sent competing attractors and are characterized by different
domains of attraction.

With gravity, these complexn-periodic ‘‘multiple-
nodding’’ modes exist both for the inverted and noninverted
pendulums.

VII. THE UPPER BOUNDARY OF THE DYNAMIC
STABILITY

When the amplitudea of the pivot vibrations is increased
beyond a certain critical valueamax, the dynamically stabi-
lized inverted position of the pendulum loses its stability.
After a disturbance the pendulum does not come to rest in
the up position, no matter how small the release angle, but
instead eventually settles into a finite amplitude steady-state
oscillation about the vertical position at frequencyv/2 ~half
the driving frequency!. This loss of stability of the inverted
pendulum has been first described by Blackburnet al.16 ~the
‘‘flutter’’ mode! and demonstrated experimentally in Ref. 17.
The latest numerical investigation of the bifurcations associ-
ated with the stability of the inverted state can be found in
Ref. 7. The graphs and the double-lobed phase trajectory of
such oscillations are shown in Fig. 10.

Obviously, these oscillations can be regarded as a special
case of then-periodic steady-state modes considered in the
previous section, particularly, the case that corresponds to
n52. As we already mentioned, for small values ofn it is
impossible to correctly represent the pendulum motion as
consisting of the slow and rapid components. The driving
amplitudeamax is not small compared with the lengthl of the
pendulum. Consequently, this case occurs beyond the limits
of applicability of the approach based on the effective poten-
tial. This approach cannot explain the destabilization of the

inverted pendulum, as well as the loss of stability of the
noninverted pendulum at conditions of ordinary parametric
resonance.~In the latter case the driving amplitude can be
small, but the driving frequency is not high enough for the
separation of rapid and slow motions.!

However, the simulation shows~see Fig. 10! a very simple
spectral composition of period-2 oscillations occurring over
the upper boundary of dynamic stability: the fundamental
harmonic whose frequency equalsv/2 ~half the driving fre-
quencyv! with a small addition of the third harmonic with
the frequency 3v/2. We note that large-amplitude oscilla-
tions of the noninverted pendulum in conditions of the prin-
cipal parametric resonance are characterized by a similar
spectrum. This similarity of the spectra is by no means oc-
casional: Next we show that both the ordinary parametric
resonance and the period-2 ‘‘flutter’’ mode that destroys the
dynamic stability of the inverted state belong essentially to
the same branch of possible steady-state period-2 oscillations
of the parametrically excited pendulum. Therefore the upper
boundary of dynamic stability for the inverted pendulum can
be found directly from the differential equation of the system
by the same method that is commonly used for determination
of conditions which lead to the loss of stability of the non-
inverted pendulum through excitation of ordinary parametric
resonance~the ranges of parametric instability; see, e.g., Ref.
10!.

To calculate the critical driving amplitude that destabilizes
the hanging down vertical position, we can replace sinw by
w in the exact differential equation of the parametrically
driven pendulum, Eq.~11!, and omit the damping term, thus
reducing it to the Mathieu equation:

ẅ1S v0
22

a

l
v2 sinvt Dw50. ~16!

Investigating stability of the inverted position, we use the
~small! angleu5p2w, and replace sinu by u in the exact
differential equation, Eq.~11!. Thus we also obtain for the
angle u of deflection from the inverted position the linear
Mathieu equation which differs from Eq.~16! for the anglew
only by the opposite sign of the second term. As we can see
clearly from Fig. 10, the periodic solution to this equation
corresponding to the desired boundary of instability can be

Fig. 10. Stationary double-period oscillations occurring
over the upper boundary of dynamic stability of the
inverted pendulum. The graphs are obtained by a nu-
merical integration of the exact differential equation for
the momentary angular deflectionw(t), Eq. ~11!.
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sought as a superposition of the fundamental harmonic
whose frequencyv/2 equals half the driving frequency, and
the third harmonic with the frequency 3v/2:

u~ t !5p2w~ t !5A1 sin~vt/2!1A3 sin~3vt/2!. ~17!

We consider first for simplicity the casev050, which
corresponds to the absence of gravity~or to the high fre-
quency limit of the pivot oscillations with gravity!. Substi-
tuting u(t) from Eq. ~17! into the corresponding differential
equation and expanding the products of trigonometric func-
tions, we obtain an expression in which we should equate to
zero the coefficients of sin(vt/2) and sin(3vt/2). Thus we get
a system of homogeneous equations for the coefficientsA1

andA3 , which has a nontrivial solution when its determinant
equals zero. This requirement yields a quadratic equation for
the desired dimensionless critical driving amplitudea/ l . The
relevant root of this equation isa/ l 53()23)/450.454,
and the corresponding ratio of amplitudes of the third har-
monic to the fundamental one equalsA3 /A15(A1323)/6
50.101. A somewhat more complicated calculation in which
the higher harmonics~up to the seventh! in u(t) are taken
into account yields fora/ l andA3 /A1 the values that coin-
cide ~within the assumed accuracy! with those cited above.

These values agree well with the simulation experiment in
conditions of the absence of gravity (v050) and very small
angular excursion of the pendulum. When the normalized
amplitude of the pivota/ l exceeds the critical valueamax/l
50.454, the swing of the period-2 ‘‘flutter’’ oscillation~am-
plitudeA1 of the fundamental harmonic! increases in propor-
tion to the square root of this excess:A1}Aa2amax. This
dependence follows from the nonlinear differential equation
of the pendulum, Eq.~11!, if sin w in it is expanded asw
2w3/6, and also agrees well with the simulation experiment
~Fig. 11! for amplitudes up to 45°.

As the amplitudea of the pivot is increased beyond the
value 0.555l, the symmetry-breaking bifurcation occurs: The
angular excursions of the pendulum to one side and to the
other become different, destroying the spatial symmetry of
the oscillation and hence the symmetry of the phase orbit. As
the pivot amplitude is increased further, aftera/ l 50.565 the
system undergoes a sequence of period-doubling bifurca-

tions, and finally, ata/ l 50.56622~for Q520!, the oscilla-
tory motion of the pendulum becomes replaced, at the end of
a very long chaotic transient, by a regular unidirectional
period-1 rotation.

Similar ~though more complicated! theoretical investiga-
tion of the boundary conditions for period-2 stationary oscil-
lations in the presence of gravity allows us to obtain the
dependence of the critical~destabilizing! amplitude of the
pivot on the driving frequencyv. For the upper boundary of
stability of the hanging down pendulum we find:

a/ l 5u~A1172232~v0 /v!2180~v0 /v!4

2914~v0 /v!2!u/4, ~18!

and for the stability of the inverted pendulum:

a/ l 5~A1171232~v0 /v!2180~v0 /v!4!

2924~v0 /v!2)/4. ~19!

The diagram in Fig. 12 shows these boundaries of
instability.23 For the hanging down pendulum, in the absence
of friction the critical amplitude given by Eq.~18! tends to
zero as the frequency of the pivot approaches 2v0 from ei-
ther side~curves 1 and 2!. This case~small vertical oscilla-
tions of the pivot with the frequency approximately twice the
natural frequency of the pendulum! corresponds to ordinary
parametric resonance. Instability of the hanging down pen-
dulum within the principal interval of parametric resonance
allows a very clear physical explanation.24 Curve 3 shows in
the parameters plane (v/v0 ,a/ l ) the region of principal
parametric resonance with friction~for Q55.0!. The nonin-
verted vertical position of the pendulum with the pivot vi-
brating at frequency 2v0 loses stability when the normalized
amplitude of this vibration exceeds the threshold value of
1/2Q. This curve almost merges with curves 1 and 2 as the
frequencyv deviates from the resonant value 2v0 . In the
high-frequency limit, for which the role of gravity is negli-
gible, the normalized critical pivot amplitudea/ l tends to the

Fig. 11. The amplitudeA1 of the principal harmonic for period-2~‘‘flutter’’ !
steady-state oscillations of the pendulum over the upper boundary of the
dynamic stability~in the absence of gravity!.

Fig. 12. The boundaries of parametric instability—driving amplitude vs
normalized driving frequency. 1 and 2—left and right frequency boundaries
of the principal interval of parametric instability (v'2v0) for the nonin-
verted pendulum in the absence of friction, 3—the same with friction (Q
55.0), 4 and 5—the upper and lower boundaries of dynamic stability for
the inverted pendulum.
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value indicated above,a/ l 53(A1323)/450.454, that corre-
sponds to the destabilization of the two symmetric equilib-
rium positions in the absence of gravity.

Curve 4 of this diagram given by Eq.~19! corresponds to
destabilization of the inverted pendulum by excitation of the
‘‘flutter’’ oscillations. The smaller the frequency of the
pivot, the greater the critical amplitude at which the inverted
position becomes unstable. We note that this curve 4 for the
boundary of the ‘‘flutter’’ mode is essentially the continua-
tion ~through infinite values of the driving frequency! of the
same branch~curve 2 without friction or curve 3 with fric-
tion! of period-2 steady-state oscillations with the time de-
pendence given by Eq.~17!. That is, curve 4 is the continu-
ation of curve 2 ~or curve 3! that corresponds to the
boundaries of instability with respect to excitation of the
ordinary parametric resonance of the noninverted pendulum.
This means that there is a close inherent relationship between
the parametric instability of the noninverted pendulum~ordi-

nary parametric resonance! and the upper limit of the dy-
namic stability of the inverted pendulum~the ‘‘flutter’’ os-
cillations!.

To make this relationship obvious, in Fig. 13 the same
boundaries are shown as curves that give the dependence of
the driving amplitudea/ l on the inverse quantity (v0 /v)2

~instead ofv/v0 in Fig. 12!. We note that negative values of
(v0 /v)2 correspond to the inverted pendulum, because the
differential equation for the deviation from the inverted po-
sition u5p2w differs from the differential equation for os-
cillations about the hanging downward position simply by
the opposite sign of the term that describes the torque of
gravitational and inertial forces. Curve 2~or curve 3 in the
presence of friction!, which gives the boundary of ordinary
parametric resonance for the noninverted pendulum, inter-
sects the zero value ofv0 /v ~corresponding to an infinitely
large driving frequency, or zero gravity! at a/ l 50.454 and
extends to the negative region ofv0 /v as the upper bound-
ary of stability for the inverted pendulum.

Curve 5 on both diagrams shows in the parameter plane
the approximate lower boundary of dynamic stabilization of
the inverted pendulum, given by Eq.~7! or Eq. ~8!. The loss
of stability at crossing this lower boundary occurs when the
effective potential well corresponding to the inverted posi-
tion has zero depth. Thus, the region of stability of the in-
verted pendulum occupies the shaded part of the parameter
plane between curves 5 and 4.

We note that complexn-periodic~or ‘‘multiple-nodding’’!
oscillations withn.2 ~explained earlier in this paper on the
basis of the effective potential approximation! occur at driv-
ing amplitudesa below the critical valueamax and also oc-
cupy a region below curve 4 on the parameter plane. How-
ever, the existence of these asymptotic oscillatory states does
not influence the dynamic stability of both inverted and or-
dinary equilibrium positions because the pendulum can be
trapped in then-periodic motions only after a certain initial
disturbance, when its initial state occurs within the corre-
sponding domain of attraction—otherwise the pendulum
comes to rest.

VIII. CONCLUDING REMARKS

The behavior of the parametrically excited pendulum dis-
cussed in this paper is richer in various modes than we can

Fig. 13. The boundaries of parametric instability—driving amplitude vs
natural frequency. 1 and 2—boundaries of the principal interval of paramet-
ric instability (v'2v0) for the noninverted pendulum in the absence of
friction, 3—the same with friction (Q55.0), 4 and 5—the upper and lower
boundaries of dynamic stability for the inverted pendulum.

Fig. 14. The spatial path, phase orbit, and graphs of
stationary oscillations with the period that equals eight
periods of the oscillating axis. The graphs are obtained
by a numerical integration of the exact differential
equation for the momentary angular deflectionw(t),
Eq. ~11!.
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expect for such a simple physical system relying on our in-
tuition. Its nonlinear large-amplitude motions can hardly be
called ‘‘simple.’’ The simulations show that variations of the
parameter set~dimensionless driving amplitudea/ l , normal-
ized driving frequencyv/v0 , and quality factorQ! result in
different regular and chaotic types of dynamical behavior.

One more example of rather counterintuitive regular oscil-
lations is given by Fig. 14. The period of this motion equals
eight driving periods, just like in the example shown in Fig.
8, but the character of oscillations and their spectrum differ
dramatically. Here the third and fifth harmonics dominate in
the spectrum. The third harmonic is characterized by an am-
plitude almost ten times greater than the fundamental har-
monic.

In this paper we have touched only a small portion of the
stationary states and regular motions of the parametrically
excited pendulum. The pendulum’s dynamics exhibits a
great variety of other asymptotic rotational, oscillatory, and
combined~both rotational and oscillatory! multiple-periodic
stationary states~attractors!, whose basins of attraction are
characterized by a surprisingly complex~fractal! structure.
Computer simulations also reveal intricate sequences of bi-
furcations, leading to numerous intriguing chaotic regimes.
All this remains beyond the scope of this paper. With good
reason we can suppose that this apparently simple physical
system is nearly inexhaustible.

APPENDIX: SMALL-AMPLITUDE n-PERIODIC
OSCILLATIONS

To calculate the critical~minimal! driving amplitude that
allows the pendulum to executen-periodic stationary oscil-
lations in the limit of small amplitudes~about both the hang-
ing down and inverted positions!, we can use the linearized
differential equation of the parametrically driven pendulum,
that is, the Mathieu equation, Eq.~16!. We can search for its
approximate small-amplitude solutionw(t) for period-n os-
cillations as a superposition of the principal~fundamental!
harmonicA1 sin(vt/n) whose frequency equalsv/n ~the sub-
harmonic of ordern with respect to the driving frequencyv!,
and a limited number of higher harmonicsAk sin(kvt/n).
@Further on we chose the time origin so that the pivot’s mo-
tion is described byz(t)5a cosvt.# Substitutingw(t) into
the differential equation and expanding the products of trigo-
nometric functions, we obtain a system of homogeneous
equations for the coefficientsAk ~for the amplitudes of har-
monics!. The homogeneous system has a nontrivial solution
if its determinant equals zero. This condition yields an equa-
tion for the corresponding critical driving amplitude. Then,
for the critical driving amplitude, the fractional amplitudes of
different harmonics are found as the solutions to this homo-
geneous system of equations.

For the period-8 oscillations in the absence of gravity
(v050), the procedure described above yields zero ampli-
tudes of the third and fifth~and eleventh! harmonics.~How-
ever, Fig. 8 shows that for large angular excursions, for
which the linearized differential equation is insufficient, the
third harmonic also gives a noticeable contribution.! For the
sake of simplicity we include here in the approximate solu-
tion only harmonics with significant~nonzero! amplitudes,
specifically, the principal harmonic, and the seventh and
ninth harmonics~which means that actually we ignore the
contribution only of the thirteenth and all higher harmonics!:

w~ t !5A1 cos~vt/8!1A7 cos~7vt/8!1A9 cos~9vt/8!.

Substitutingw(t) in Eq. ~16! with v050 yields the follow-
ing system forAn :

A1232~A71A9!~a/ l !50, 32A1~a/ l !249A750,

32A1~a/ l !281A950.

A nontrivial solution exists fora/ l 563/(32A130)50.173.
This critical value of the driving amplitude was already men-
tioned in Sec. VI, and it agrees exactly with the simulation
experiment for period-8 small oscillations. The above equa-
tions also yield the fractional contributions of the seventh
and ninth harmonics:A7 /A159/(7A130)50.113, A9 /A1

57/(9A130)50.068—the values that also agree perfectly
well with the simulations based on numerical integration of
the differential equation.

Similarly, an approximate solution for the period-6 oscil-
lations can be sought in the form:

w~ t !5A1 cos~vt/6!1A5 cos~5vt/6!1A7 cos~7vt/6!,

which yields the following system of equations forAn :

A1218~A51A7!~a/ l !50, 18A1~a/ l !225A550,

18A1~a/ l !249A750.

These equations give for the critical driving amplitude the
value a/ l 535/(18A74)50.226, and for fractional contribu-
tions of the fifth and seventh harmonics, respectively,
A5 /A157/(5A74)50.163, and A7 /A155/(7A74)50.083.
These theoretical values agree quite well with the simula-
tions.

Similarly, for the period-4 small-amplitude oscillations:

w~ t !5A1 cos~vt/4!1A3 cos~3vt/4!1A5 cos~5vt/4!,

A128~A31A5!~a/ l !50, 8A1~a/ l !29A350,

8A1~a/ l !225A550,

whencea/ l 515/(8A34)50.321,A3 /A155/(3A34)50.286,
A5 /A153/(5A34)50.103. If in the approximate solution we
also take into account the seventh harmonic, for zero gravity
and zero friction we find more accurate values of the critical
driving amplitudea/ l 50.320 and fractional contributions of
high harmonics A3 /A150.288, A5 /A150.102, A7 /A1

50.015. We can compare these values with results of the
simulation experiment:a/ l 50.320, A3 /A150.287, A5 /A1

50.101,A7 /A150.016.
The simulations show that, besides the above-considered

n-periodic oscillations with even values ofn, stationary para-
metric oscillations with oddn values (n53,5,...) are also
possible. Critical values for the driving amplitudes that pro-
vide such small oscillations also can be found on the basis of
a linearized theory, and the results of such calculations show
good agreement with the simulations.

The existence ofn-periodic subharmonic oscillations
whose spectrum is characterized by zero~or very small! am-
plitude of the principal~fundamental! harmonic with fre-
quencyv/n may seem even more counterintuitive. An ex-
ample of such period-8 oscillations is shown in Fig. 14. For
small oscillations, third, fifth, and eleventh harmonics domi-
nate in the spectrum, so that we can search an approximate
solution of the linearized equation in the form:
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w~ t !5A3 cos~3vt/8!1A5 cos~5vt/8!1A11cos~11vt/8!.

Thus we find for the critical amplitudea/ l 5165/(32A146)
50.427, and for the fractional amplitudes of harmonics
A5 /A3533/(5A146)50.546, A11/A3515/(11A146)
50.113. More precise values~which agree well with the
simulations! are obtained by including also the thirteenth
harmonic: a/ l 50.419, A5 /A350.560, A11/A350.111,
A13/A350.044.

Similar ~though more complicated! calculations of the
critical driving amplitudes and spectrum on the basis of a
linearized differential equation are also possible for various
modes of the parametrically driven pendulum in the presence
of gravity and friction.
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