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Abstract.
The phenomenon of parametric resonance is explained and investigated both

analytically and with the help of a computer simulation. Parametric excitation
is studied on the example of the rotary oscillations of a simple linear system
– mechanical torsion spring pendulum excited by periodic variations of its
moment of inertia. Conditions and characteristics of parametric resonance and
regeneration are found and discussed in detail. Ranges of frequencies within
which parametric excitation is possible are determined. Stationary oscillations
at the boundaries of these ranges are investigated. The simulation experiments
aid greatly an understanding of basic principles and peculiarities of parametric
excitation and complement the analytical study of the subject in a manner that
is mutually reinforcing.

1. Introduction: the investigated physical system

A physical system undergoes a parametric forcing if one of its parameters is modulated
periodically with time. A common familiar example of parametric excitation of
oscillations is given by the playground swing on which most people have played in
childhood (see, e.g., [1]). The swing can be treated as a physical pendulum whose
reduced length changes periodically as the child squats at the extreme points, and
straightens when the swing passes through the equilibrium position. It is easy to
illustrate this phenomenon in the classroom by the following simple experiment. Let
a thread with a bob hanging on its end pass through a little ring fixed immovably in a
support. The other end of the thread that you are holding in your hand you can pull by
some small length each time when the swinging bob passes through the middle position
and release the thread to its previous length each time the bob reaches the utmost
deflection. These periodic variations of the pendulum length with the frequency twice
the frequency of natural oscillation cause the amplitude to increase progressively.
Another canonical example of parametric pumping is given by a pendulum whose
support oscillates vertically (see [2]).

However, such systems do not perfectly suit to the initial acquaintance with
the parametric excitation because the ordinary pendulum is a nonlinear physical
system: the restoring torque of the gravitational force is proportional to the sine
of the deflection angle. That is why we suggest to study the basics of parametric
resonance by using the simplest linear mechanical system in which the phenomenon
is possible, namely, the torsion spring oscillator, similar to the balance device of a
mechanical watch. An educational computer program that simulates such a system
has been developed by the author (see [3]).

Left-hand side of figure 1 shows a schematic image of the apparatus. It consists
of a rigid rod which can rotate about an axis that passes through its center. Two
identical weights are balanced on the rod. An elastic spiral spring is attached to the
rod. The other end of the spring is fixed. When the rod is turned about its axis, the
spring flexes. The restoring torque −Dϕ of the spring is proportional to the angular
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displacement ϕ of the rotor from the equilibrium position. After a disturbance, the
rotor executes a harmonic torsional oscillation.

To provide modulation of a system parameter, we assume that the weights can
be shifted simultaneously along the rod in opposite directions into other symmetrical
positions so that the rotor as a whole remains balanced. However, its moment of
inertia J is changed by such displacements of the weights. When the weights are
shifted toward or away from the axis, the moment of inertia decreases or increases
respectively. Thus the moment of inertia of the rotor is the parameter to be modulated
in the investigated physical system. As the moment of inertia J is changed, so also is
the natural frequency ω0 =

√
D/J of the torsional oscillations of the rotor. Periodic

modulation of the moment of inertia can cause, under certain conditions, a growth of
(initially small) natural rotary oscillations of the rod.

Figure 1. Schematic image of the torsion spring oscillator with a balanced rotor
whose moment of inertia is forced to vary periodically (left), and an analogous
LCR-circuit with a coil whose inductance is modulated (right).

This physical system is ideal for the study of parametric resonance and has several
advantages in an educational context because it gives a very clear example of the
phenomenon in a linear mechanical system. All peculiarities of parametric excitation
in this linear system can be completely explained and exhaustively investigated by
modest means even quantitatively.

Parametric excitation is also possible in an electromagnetic analogue of the spring
oscillator, namely in a series LCR-circuit containing a capacitor, an inductor (a coil),
and a resistor (right-hand side of figure 1). An oscillating current in the circuit can be
excited by periodic changes of the capacitance if we periodically move the plates closer
together and farther apart, or by changes of the inductance of the coil if we periodically
move an iron core in and out of the coil. Such periodic changes of the inductance
are quite similar to the changes of the moment of inertia in the mechanical system
considered above. However, the mechanical system has certain spectacular didactic
advantages primarily because its motion is easily represented on the computer screen,
and it is possible to see directly what is happening [3]. Such visualization makes the
simulation experiments very convincing and easy to understand, aiding a great deal
in developing our physical intuition.

2. Peculiarities of parametric resonance

The causes and characteristics of parametric resonance are considerably different from
those of the resonance occurring when the oscillator responds to a periodic external
force exerted directly on the system. Specifically, the resonant relationship between the
frequency of modulation of a parameter and the mean natural frequency of oscillation
of the system is different from the relationship between the driving frequency and the
natural frequency for the usual resonance in forced oscillations. Parametric excitation
can occur only if at least weak natural oscillations already exist in the system. And if
there is friction, the amplitude of modulation of the parameter must exceed a certain
threshold value in order to cause parametric resonance.
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To understand how a change in the moment of inertia can increase or decrease the
angular velocity of the rotor, let us imagine for a while that the spiral spring is absent.
Then the angular momentum of the system would remain constant as the weights are
being moved along the rod. Thus the resulting reduction in the moment of inertia is
accompanied by an increment in the angular velocity, and the rotor acquires additional
energy. The system is similar in some sense to a spinning figure skater, whose rotation
accelerates as she moves her initially stretched arms closer to her body.

The greater the initial angular velocity, the greater the increment in the velocity
and the energy. This additional energy is supplied to the rotor by the source that
moves the weights along the rod. On the other hand, if the weights are moved apart
along the rotating rod, the angular velocity and the energy of the rotor diminish. The
decrease in energy is transmitted back to the source.

In order that increments in energy occur regularly and exceed the amounts of
energy returned, i.e., in order that, as a whole, the modulation of the moment of inertia
regularly feed the oscillator with energy, the period and the phase of modulation must
satisfy certain conditions. Figure 2 shows the graphs of parametric oscillations of
the torsion pendulum excited by a constrained sinusoidal motion of the weights along
the rod with the period which equals one half of the natural period. The graphs are
obtained with the help of a computer simulation program included in the educational
software package [3].

Figure 2. Graphs of the angular displacement and velocity of the rotor and the
phase trajectory in conditions of the principal parametric resonance.

To provide a growth of energy by modulation of the moment of inertia, the motion
of the weights toward the axis of rotation must occur while the angular velocity of the
rotor is on the average greater in magnitude than it is when the weights are moved
apart to the ends of the rod. The graphs in figure 2 correspond to this case: we see
clearly that during the intervals of negative values of v the angular velocity ϕ̇ is greater
in magnitude than during the intervals of positive v. Otherwise the modulation of the
moment of inertia aids the damping of the natural oscillations.

Parametric excitation is possible only if one of the energy-storing parameters, D
or J (C or L in the case of LCR-circuit), is modulated. Modulation of the resistance R
(or of the damping constant γ in the mechanical system) can affect only the character
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of the damping of oscillations. It cannot generate an increase in their amplitude.
The strongest parametric oscillations are excited when the cycle of modulation is

repeated twice during one period T0 of natural oscillations in the system, i.e., when the
frequency ω of parametric modulation is twice the natural frequency ω0 of the system.
But the delivery of energy is also possible when the parameter changes once during
one period, twice during three periods, and so on. That is, parametric resonance is
possible when one of the following conditions for the frequency ω of modulation (or
for the period of modulation T = 2π/ω) is fulfilled:

ω = 2ω0/n, T = nT0/2, (1)

where n = 1, 2, . . . . For a given amplitude of modulation of the parameter, the
higher the order n of parametric resonance, the less (in general) the amount of energy
delivered to the oscillating system during one period.

One of the most interesting characteristics of parametric resonance is the
possibility of exciting increasing oscillations not only at the frequencies ωn given in
Eq. (1), but also in intervals of frequencies lying on either side of the values ωn (in
the ranges of instability.) These intervals become wider as the range of parametric
variation is extended, that is, as the depth of modulation is increased.

An important distinction between parametric excitation and forced oscillations
is related to the dependence of the growth of energy on the energy already stored in
the system. While for a direct forced excitation the increment of energy during one
period is proportional to the amplitude of oscillations, i.e., to the square root of the
energy, at parametric resonance the increment of energy is proportional to the energy
stored in the system.

Energy losses caused by friction (unavoidable in any real system) are also
proportional to the energy already stored. In the case of direct forced excitation,
an arbitrarily small external force gives rise to resonance. However, energy losses
restrict the growth of the amplitude because these losses grow with the energy faster
than does the investment of energy arising from the work done by the external force.

In the case of parametric resonance, both the investment of energy caused by the
modulation of a parameter and the frictional losses are proportional to the energy
stored (to the square of the amplitude), and so their ratio does not depend on
the amplitude. Therefore, parametric resonance is possible only when a threshold
is exceeded, that is, when the increment of energy during a period (caused by the
parametric variation) is larger than the amount of energy dissipated during the same
time. To satisfy this requirement, the range of the parametric variation (the depth
of modulation) must exceed some critical value. This threshold value of the depth of
modulation depends on friction. However, if the threshold is exceeded, the frictional
losses of energy cannot restrict the growth of the amplitude. In a linear system the
amplitude of parametrically excited oscillations must grow indefinitely.

In a nonlinear system the natural period depends on the amplitude of oscillations.
If conditions for parametric resonance are fulfilled at small oscillations and the
amplitude begins to grow, the conditions of resonance become violated at large
amplitudes. In a real system the growth of the amplitude over the threshold is
restricted by nonlinear effects.

3. Parametric resonance and the threshold of parametric excitation

To explain the behaviour of the parametrically pumped oscillator, first we make use
of the conservation of energy. At resonance additional energy must be transmitted
to the rotor by the source that makes the weights move periodically along the rod.
Therefore, we calculate the work done by the source during one period of oscillation
and find those conditions under which this work is positive.
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In this model we assume the forced motion of the weights along the rod be exactly
sinusoidal, and so their distance l from the axis of rotation varies with time according
to the following expression:

l(t) = l0(1 + m sin ωt). (2)

Here l0 is the mean distance of the weights from the axis of rotation, and m is the
dimensionless (fractional) amplitude of their harmonic motion along the rod (m < 1).
For simplicity, we let the rod be very light compared to the weights. We note that m
is the modulation depth of the distance l(t), while the modulation depth mJ of the
moment of inertia J(t) is approximately twice as great (mJ ≈ 2m if m ¿ 1), because
the moment of inertia is proportional to the square of the distance of the weights from
the axis of rotation.

From Eq. (2) we find that a weight moves along the rod with a velocity and
acceleration (relative to the rod) which change with time as cos ωt and − sin ωt
respectively:

v(t) = dl/dt = ωl0m cosωt, ar(t) = dv/dt = −ω2l0m sinωt. (3)

In order to find the force F exerted on the weight by the device that makes
it move along the rod, we use a non-inertial reference frame rotating with the rod.
Applying Newton’s second law to the motion of the weight in this rotating frame of
reference, we must take into account the centrifugal pseudo force of inertia exerted on
the weight, Mϕ̇2(t)l(t), where M is the mass of the weight and ϕ̇(t) is the angular
velocity of the rod:

Mar(t) = F (t) + Mϕ̇2(t)l(t). (4)

We are interested in the work of this force F (t) done during one period of
oscillation. The amount of this work (for both weights) equals the change in the
energy of oscillations during one period. For the infinitesimal element of work dW
done during a time interval dt (during which the weight is displaced along the rod a
distance dl = v(t)dt), we can write:

dW = F (t)dl = F (t)v(t)dt = [ Mar(t)−Mϕ̇2(t)l(t) ]v(t)dt. (5)

As we see from Eq. (3), the radial velocity v(t) of the weight in Eq. (5) is
proportional to the dimensionless amplitude m of its forced motion along the rod.
If we restrict our calculations to the first order of the small parameter m, we need
keep only the second term in square brackets in Eq. (5), and we can substitute for l(t)
from Eq. (2) only its mean value l0:

dW ≈ −Mϕ̇2(t)l0v(t)dt = −Mϕ̇2(t)l20ωm cosωt. (6)

As we noted above, the most favorable condition for the parametric excitation
of the rotor occurs if the weights execute two full cycles of the forced motion during
one mean period of the natural oscillation. In other words, the frequency ω in Eq. (2)
and Eq. (6) must be approximately twice the mean natural frequency ω0 = 2π/T0

of oscillation of the rotor. (Here ω0 is the frequency of free oscillations of the rotor
with the weights fixed at their average distance l0 from the axis). For small values
of the dimensionless amplitude m, the frequency of modulation ω = 2ω0 in Eq. (2)
corresponds to exact tuning to the principal resonance (n = 1).

In addition, it is necessary that a certain phase relation between the forced motion
of the weights and the torsional oscillations of the rotor be satisfied: Namely, the
weights must move with maximal relative velocity toward the axis of rotation at
moments when the oscillating rod moves with its greatest angular velocity. This phase
relation is satisfied for the motion of the weights described by Eqs. (2)–(3) provided
we assume the following time dependence for the torsional oscillations of the rotor:

ϕ(t) = ϕm cos ω0t; ϕ̇(t) = −ϕmω0 sin ω0t. (7)
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These are only approximate expressions because, strictly speaking, the torsional
oscillation of the rotor is not harmonic (see figure 3 below). Deviations from a
sinusoidal oscillation are caused by the motion of the weights since this motion
influences the moment of inertia and hence the angular velocity of the rotor.

After the substitution of ω = 2ω0 and ϕ̇(t) from Eq. (7) into Eq. (6) we can
integrate dW given by (6) over a period T0 = 2π/ω0, taking into account that the
mean value of cos2 ω0t is 1/2. Finally we find that (up to terms of the first order in
the small value m), the work W of the force F (t) done during a period T0 is given by
the following expression:

W =
1
2
Mϕ2

mω2
0l20 · 2πm. (8)

The same expression is valid for the second weight, and so as a whole the forces
exerted on the weights perform positive work (W > 0) during a period and increase
the energy of the oscillator by the amount 2W :

∆E = 2W = Mϕ2
mω2

0l20 · 2πm. (9)

Since we assume the rod be very light compared to the weights, we can consider
all kinetic energy of the rotor to be the kinetic energy of these massive weights. The
total energy E of the oscillator is equal to the maximal value of its kinetic energy,
which is attained at the instants when the oscillating rotor moves near its equilibrium
position and has its greatest angular velocity ω0ϕm. Therefore E = Mϕ2

mω2
0l20. We

do not take into account here the kinetic energy of the weights in their radial motion
along the rod, because this energy is proportional to the square of small parameter
m. Comparing this expression with the right-hand side of Eq. (9), we see the most
essential feature of parametric resonance, namely that the investment of energy ∆E
due to modulation of a parameter is proportional to the energy E already stored in
the oscillator:

∆E = 2πmE. (10)

Equation (10) means that at parametric resonance the total energy E of
oscillations, averaged over a period T0 = 2π/ω0 of oscillation, grows exponentially
with time:

dE

dt
= mω0E, E(t) = E0 exp(2αt), where 2α = mω0. (11)

This result is valid in the absence of friction. Dissipation of the mean energy E
due to viscous friction is also described by an exponential function:

dE

dt
= −2γE, E(t) = E0 exp(−2γt). (12)

At the threshold of parametric resonance these energy losses are just compensated
for by the delivery of energy arising from the forced periodic motion of the weights.
In this instance, γ = α. Thus we can find the minimal value of m (for a given value
of γ or of the quality factor Q) which makes parametric excitation possible:

mmin =
2γ

ω0
=

1
Q

. (13)

Equivalently, the threshold condition can be expressed in terms of the maximal value
of the damping constant γ (or the minimal quality factor Q) for a given value m of
the amplitude in (2):

γmax =
1
2
mω0, Qmin =

ω0

2γmax
=

1
m

. (14)
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These results concerning the threshold of parametric excitation are approximate
and are valid only for small values of the dimensionless amplitude m of the forced
motion of the weights along the rod. The simulation program [3] executes numerical
integration of the differential equation of motion. This integration is not restricted
to small values of m. Thus the simulation allows us to find the threshold conditions
experimentally (by trial and error) with greater accuracy.

Steady oscillations occurring at the threshold are called parametric regeneration.
They are shown in figure 3. These graphs should be compared with those shown in
figure 2, which displays plots of resonant oscillations occurring above the threshold,
where the amplitude grows exponentially in spite of the friction.

Figure 3. The phase trajectory of stationary oscillations at the threshold
conditions (the mode of parametric regeneration at m ≈ 1/Q), and the time-
dependent graphs of the rotor angular velocity and of radial velocity of the weights.

When the depth of modulation exceeds the threshold value, the (averaged over
the period) energy of oscillations increases exponentially with time. The growth
of the energy again is described by Eq. (11). However, now the index of growth
2α is determined by the amount by which the energy delivered through parametric
modulation exceeds the simultaneous losses of energy caused by friction: 2α = mω0−
2γ. The energy of oscillations is proportional to the square of the amplitude. Therefore
the amplitude of parametrically excited oscillations also increases exponentially with
time (see figure 2): a(t) = a0 exp(αt) with the index α (one half the index 2α of the
growth in energy). For the principal resonance we have α = mω0/2− γ.

4. Differential equation for sinusoidal motion of the weights

In the assumed model, we consider the rod itself to be very light, so that the moment
of inertia J of the rotor is due principally to the weights: J = 2Ml2(t). The angular
momentum Jϕ̇(t) changes with time according to the equation:

d

dt
(Jϕ̇) = −Dϕ, (15)

where −Dϕ is the restoring torque of the spring. Substituting into Eq. (15) l(t) from
Eq. (2) and taking into account that ω2

0 = D/J0 (J0 = 2Ml20 is the moment of inertia
with the weights in their mean positions), we obtain finally:

d

dt

[
(1 + m sin ωt)2ϕ̇

]
= −ω2

0ϕ− 2γϕ̇. (16)

We have added the drag torque of viscous friction to the right-hand side of
Eq. (16). This equation is solved numerically in the computer program [3] in real
time during the simulation.
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We note that the harmonic motion of the weights along the rod described by
Eq. (2) does not mean that the moment of inertia J(t) is harmonically modulated.
Indeed, J is proportional to the square of the distance l(t) rather than to its first
power. The time dependence of J(t) includes the second harmonic of the frequency
ω. Only for small values of the amplitude m (when m ¿ 1) can we consider the
modulation of the moment of inertia to be approximately sinusoidal:

J(t) = 2Ml2(t) = 2Ml20(1 + m sin ωt)2 ≈
2Ml20(1 + 2m sin ωt) = J0(1 + mJ sin ωt), (17)

where J0 = 2Ml20 is the mean value of the moment of inertia, and mJ = 2m is the
depth of its modulation. (We note that the value of mJ is approximately twice the
value of m.) If we are interested only in an approximate solution valid up to terms of
the first order in the small parameter m, then instead of the exact differential equation
of motion, Eq. (16), we can solve the following approximate equation:

ϕ̈ + 2γϕ̇ + ω2
0(1− 2m sin ωt)ϕ = 0. (18)

We ignore here the modulation of the coefficient of ϕ̇ because for parametric resonance
the variation of only those parameters which store energy (the moment of inertia and
the torsion spring constant) is essential. Modulation of the damping constant γ cannot
excite oscillations.

When γ = 0, equation (18) is called Mathieu’s equation. The theory of Mathieu’s
equation has been fully developed, and all significant properties of its solutions are
well known (see, for example, [4]). A complete mathematical analysis of Mathieu’s
equation is rather complicated and gives little insight into the physics of parametric
excitation. This analysis is usually restricted to the determination of the frequency
intervals within which the state of rest in the equilibrium position becomes unstable,
so that at arbitrarily small deviations from the state of rest the amplitude of incipient
small oscillations increases progressively with time. The boundaries of these intervals
of instability depend on the depth of modulation m.

We emphasize that the application of the theory of Mathieu’s equation to the
simulated system is restricted to the linear order in m. For finite values of the depth
of modulation m, the resonant frequencies and the boundaries of the intervals of
instability for the simulated system differ from those predicted by Mathieu’s equation.
We shall see this point in the next section, in which we avoid struggling with Mathieu’s
equation or Floquet theory and develop a rather simple theory of the simulated system
up to the terms of the second order in m by using the approach described in [5].

5. The principal interval of parametric instability

In the vicinity of the principal resonance the frequency of modulation is approximately
twice the natural frequency (ω ≈ 2ω0), and we can express ω in the form ω = 2ω0 + ε,
where ε is a small detuning from resonance (|ε| ¿ ω0). We then propose that an
approximate solution ϕ(t) to Eq. (16) represents a nearly harmonic motion with the
frequency ω̃ = ω/2 = ω0 + ε/2. We let the amplitude and phase of the trial function
ϕ(t) slowly vary with time:

ϕ(t) = p(t) cos ω̃t + q(t) sin ω̃t. (19)

Here p(t) and q(t) are functions of time that vary slowly relative to the oscillating sine
and cosine functions. In the exact solution to Eq. (16) there are also higher harmonics
with the frequencies 3ω̃, 5ω̃, . . . , but their contribution is proportional to higher
powers of the small parameter m ¿ 1. We do not include these higher harmonics in
the approximate solution expressed by Eq. (19).
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The time variation of the amplitudes p(t) and q(t) is caused by the modulation
of the moment of inertia, and so the time derivatives of functions p(t) and q(t) are
also proportional to the small quantity m. Substituting ϕ from Eq. (19) into the
differential equation, Eq. (16), we can express the products of the sine and cosine
functions in the following way:

sin 2ω̃t cos ω̃t = (sin ω̃t + sin 3ω̃t)/2,

sin 2ω̃t sin ω̃t = (cos ω̃t− cos 3ω̃t)/2,

and omit in the equation the higher harmonics with the frequency 3ω̃. Thus for
the unknown functions p(t) and q(t) we obtain the following system of differential
equations of the first order:

2ω̃ q̇ − (ω̃2 − ω2
0) p + (2γω̃ −mω2

0) q = 0,

−2ω̃ ṗ− (2γω̃ + mω2
0) p− (ω̃2 − ω2

0) q = 0. (20)

We have omitted here the terms 2γṗ and 2γq̇ since parametric excitation is possible
only if friction is small enough (from Eq. (14) we see that 2γ < mω0). The contribution
of these omitted terms to Eq. (20) is of the order m2.

According to general rules, we can search for a solution to these equations in the
form exp αt. The condition for the existence of a nontrivial (nonzero) solution to this
system of homogeneous equations gives the following expression for α:

α ≈ 1
2

√
(mω0)2 − ε2 − γ. (21)

Here we have taken into account that ω̃2 ≈ ω2
0 + ω0ε. If there is an exact

tuning to resonance, the deviation in frequency ε vanishes (ε = 0), and Eq. (21)
gives the following value for the index α that determines the exponential growth in
the amplitude of parametrically excited oscillations:

α ≈ mω0/2− γ. (22)

The amplitude of oscillation grows if α > 0. Therefore, for the threshold of
parametric resonance we obtain m = 2γ/ω0 = 1/Q. The same value for the threshold
of parametric excitation under conditions of exact tuning to resonance is obtained
above by using the conservation of energy (see Eq. (13)). For zero friction, the index
of the exponential resonant growth in the amplitude is proportional to the depth of
modulation: α = mω0/2.

For the case in which friction is absent (γ = 0), and for a given value m of the
depth of modulation, we find from Eq. (21) that increasing with time solutions of the
linearized differential equation, Eq. (16), exist in some interval of frequencies which
extends by ∆ω on either side of the resonant value ωres = 2ω0. The half-width of the
interval ∆ω = mω0 is proportional to the amplitude m of the forced oscillation of the
weights. For a value ω of the frequency of modulation lying somewhere within the
interval, the amplitude of parametrically excited oscillations grows exponentially with
time as exp(αt), where the index α of the growth is given by Eq. (21) with γ = 0:

α =
1
2

√
(mω0)2 − (ω − ωres)2. (23)

(for |ω − ωres| ≤ mω0). The value of α is zero at the boundaries ω± of the interval of
instability: ω± = ωres±mω0. At these boundaries stationary oscillations of a constant
amplitude are possible. An example of such oscillations is shown in figure 4.

The symmetric shape of these graphs shows clearly that on average there is no
energy transfer to the frictionless oscillator: the energy gained during one half-cycle
of modulation is returned back during the next half-cycle.
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Figure 4. The phase trajectory of stationary oscillations occurring at the left
boundary of the principal instability interval (left), and the time dependent graphs
of the angular velocity and of the radial velocity of the weights (right).

In order to obtain more precise values for the frequencies of modulation ω±
which correspond to the boundaries of the instability interval, we need to include
higher harmonics in the trial function ϕ(t) for an approximate solution of Eq. (16).
Their frequency 3ω̃, 5ω̃, . . . is an odd-number multiple of the fundamental frequency
ω̃ = ω/2 ≈ ω0. Restricting the calculation up to the second order in m, we hold only
the 1st and 3rd harmonics in the trial function:

ϕ(t) = C1 cos ω̃t + S1 sin ω̃t + C3 cos 3ω̃t + S3 sin 3ω̃t. (24)

If we are interested only in the boundaries ω± of the interval of instability, at
which the oscillations are stationary and their amplitude does not vary with time, we
can assume the coefficients C1, S1, C3, and S3 to be constant.

Substituting Eq. (24) in Eq. (16), we can omit the terms with the frequency 5ω̃.
In the terms with the frequency ω̃ we need to keep quantities up to the first and second
order in m, while in the terms with the frequency 3ω̃ we need to keep only the terms
of the first order. Finally we arrive at a system of homogeneous equations for C1,
S1, and C3, S3. The condition for the existence of a nontrivial solution to the system
gives us approximate expressions for the desired boundaries ω±:

ω± = 2ω0

(
1± 1

2

√
m2 − (1/Q)2 +

11
16

m2

)
. (25)

The term of the second order in m has the same value for both boundaries of the
interval. It does not influence the width of the interval, shifting it as a whole by a
value proportional to m2.

The structure of the principal interval of parametric instability is shown in
figure 5,a for the absence of friction (thick bounding curves), for Q = 20, and Q
= 10 (thin inner curves). It is more convenient to express the boundaries using not
the frequency ω of the parametric modulation, but rather the period T = 2π/ω. This
convention is usually used in presenting the stability map for Mathieu-type systems
by the so-called Incze – Strutt diagrams. We also use it in the simulation program [3]
and for all figures in this paper. The dashed regions in figure 5,b show the first three
intervals of parametric instability in one T – m diagram. ‡

In the presence of viscous friction the principal interval shrinks and disappears
at all if Q < 1/m: its boundaries merge at the threshold. Equation (25) gives for
the threshold the value mmin = 1/Q which has been found above, Eq. (13), from
considerations based on the energy conservation.

‡ Actually the curves in figure 5 are plotted with the help of a somewhat more complicated formulas
than Eq. (25) (not cited in this paper), which are obtained by holding several more harmonic
components in the trial function ϕ(t).
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Figure 5. Principal instability interval (a) and the diagram showing the
boundaries of the first three intervals (b). Thin curves which deviate slightly at
large m values from the boundaries of the principal interval are plotted according
the approximate expression (25).

An example of steady oscillations occurring at the left boundary of the principal
instability interval is shown in figure 4. The upper part of figure 6 shows the phase
diagram and the graphs of steady oscillations at the right boundary of the interval
in the absence of friction. We note the departure of the shape of these graphs from
a sine curve, which is caused by the contribution of higher harmonics (mainly of the
third harmonic with the frequency 3ω̃ = 3

2ω). The ratio of the amplitude of the third
harmonic to the amplitude of the fundamental harmonic is approximately the same
for both boundaries (|C3/C1| ≈ 3

8m). The difference in the patterns of oscillations at
the left and right boundaries (compare the graphs in figures 4 and 6) is explained by
different phase shift of the third harmonic with respect to the fundamental one.

Figure 6. The phase trajectory of stationary oscillations occurring at the right
boundary of the principal instability interval (left), and the time-dependent graphs
of the angular velocity of the rotor and of radial velocity of the weights (right).

The lower part of figure 6 corresponds to the right boundary in the presence
of friction. From the asymmetry of the graph it is clear that in this case the
energy received by the oscillator is greater than the energy returned back: during
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the intervals of negative values of v (while the weights are moving toward the axis)
the angular velocity ϕ̇ is greater in magnitude. The energy excess compensates for the
frictional losses, providing the stationary oscillations. Outside the instability interval,
the modulation of the moment of inertia causes only a few changes in the shape of
those decaying natural oscillations which may have been excited.

The simulations show that stationary oscillations at the boundaries of the
principal resonance include also the 5th and even 7th harmonic components with
frequencies 5

2ω and 7
2ω respectively. To find the boundaries with greater precision,

we should include these high harmonics into the trial function ϕ(t), Eq. (24). For the
frictionless oscillator it is more convenient to choose the time origin in such a way that
the motion of the weights along the rod be described in Eq. (2) by l(t) = l0(1+m cosωt)
instead of the sine function. In this case the sine and cosine harmonics do not mix,
that is, the stationary oscillations at the left boundary of the interval include only
harmonics of the cosine type, and at the right boundary – of the sine type.

The final analytical expressions for the frequencies (and periods) of modulation
and for the relative contributions of high harmonics (as functions of m) at the
boundaries of the instability interval are complicated and hence not cited in this paper.
However, they show a very good agreement with the simulations. We cite here the
calculated values for a certain modulation depth m = 0.3 (30%). The corresponding
experimental values (obtained in the simulation) are shown in the parenthesis:

Left (cosine-type) boundary: period T/T0 = 0.4066 (0.4066);
C3/C1 = −0.103 (−0.101); C5/C1 = 0.015 (0.016); C7/C1 = 0.002 (0.001).

Right (sine-type) boundary: period T/T0 = 0.5528 (0.5528);
S3/S1 = −0.129 (−0.129); S5/S1 = 0.020 (0.020); S7/S1 = 0.003 (0.003).

For arbitrary values of the modulation depth m the calculated boundaries of the
principal instability interval are shown by the first “tongue” of T – m diagram in
figure 5.

6. Resonance of the second order

In contrast to the principal resonance, for which the energy supply due to the
parameter modulation occurs even if we assume the torsional oscillations to be purely
sinusoidal (see Eq. (7)), for the second resonance a positive net energy delivery is
possible only by virtue of the asymmetric distortions in the shape of the oscillations.
These distortions are clearly seen in figure 7. They provide the motion of the weights
toward the axis of rotation (v > 0) to happen on average at a greater (in magnitude)
angular velocity ϕ̇ than the backward motion. The distortions can be described by
the second harmonic component (frequency 2ω), whose contribution is proportional
to the depth of modulation m. Hence the amount of energy delivered by modulation
in conditions of the second parametric resonance is proportional not to m (as at the
principal resonance, see Eq. (10)), but only to m2.

In order to find the boundaries of the second interval of parametric instability
with n = 2, for which ω ≈ ω0 (or T ≈ T0), we look for a periodic solution of Eq. (18)
near the value ω = ω0. Considering terms up to the second order in the modulation
depth m, we should include in this approximate solution the sinusoidal oscillations
with the fundamental frequency§ ω = ω0 + ε (the frequency of modulation) and the

§ However, it may occur convenient to consider the fundamental frequency of parametrically excited
stationary oscillations to be always equal to one half of the frequency of modulation. Then the
spectrum of oscillations in the case of resonance of an odd order includes only odd harmonics. The
spectrum of stationary oscillations for resonance of an even order includes only even harmonics (the
amplitude of the fundamental harmonic being zero). We follow this convention introducing relevant
notations for the coefficients of harmonics in Eq. (26).
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Figure 7. The phase trajectory of oscillations in conditions of the second
parametric resonance (left) and graphs of the angular velocity and of the radial
velocity of the weights (right).

second harmonic with the frequency 2ω:

ϕ(t) = C2 cosωt + S2 sin ωt + C4 cos 2ωt + S4 sin 2ωt. (26)

An example of such stationary oscillations is shown in figure 8.

Figure 8. The phase trajectory of stationary oscillations occurring at the left
boundary of the second instability interval (left) and graphs of the angular velocity
and of the radial velocity of the weights (right).

Substituting ϕ(t) into Eq. (18), we transform there the products of sine and
cosine functions into sums, keeping the terms with the frequencies ω and 2ω. Thus,
for the coefficients C2, S2, and C4, S4 we obtain the following system of homogeneous
equations:

(
1− ω2

0

ω2

)
C2 +

3
4
m2 C2 + 2mS4 − 2γ

ω0
S2 = 0,

(
1− ω2

0

ω2

)
S2 +

1
4
m2 S2 + 2mC4 +

2γ

ω0
C2 = 0,

3 C4 − 2m S2 = 0, 3 S4 + 2mC2 = 0. (27)

The last two equations of the system give us the expressions for the amplitudes
C4 and S4 of the second harmonic in ϕ(t) in terms of the depth of modulation m and
the amplitudes C2 and S2 of the principal harmonic:

C4 =
2
3
mS2, S4 = −2

3
mC2. (28)
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These relations mean essentially that the amplitude of the second harmonic in
the stationary oscillations equals 2

3m times the amplitude of the principal harmonic.
The ratio of the amplitudes of these harmonics is the same for both boundaries of the
interval. However, for the left and right boundaries these harmonics add with different
relative phases, creating different shape of resulting oscillations. Graphs of oscillations
occurring at the right boundary of the second instability interval are shown in figure 9.

Figure 9. The phase trajectory of stationary oscillations occurring at the right
boundary of the second instability interval (left) and graphs of the angular velocity
and of the radial velocity of the weights (right).

Substituting C4 and S4 from Eq. (28) into the first two equations of the system,
Eq. (27), and taking into account that ω2 = (ω0 + ε)2 ≈ ω2

0 + 2ω0ε, we obtain the
system of two homogeneous equations for C2 and S2:

(
2ε

ω0
− 7

12
m2

)
C2 − 2γ

ω0
S2 = 0,

2γ

ω0
C2 +

(
2ε

ω0
− 13

12
m2

)
S2 = 0. (29)

Nontrivial solution to this system exists if its determinant equals zero. This
condition determines the values of ε = ω−ω0 which correspond to the boundaries ω±
of the second interval of instability:

ω± =
(

1 +
5
12

m2 ± 1
8

√
m4 − (4/Q)2

)
ω0. (30)

We note that even the lower boundary is displaced to a higher frequency from
the value ω0. The boundaries of the interval merge at the threshold. From Eq. (30)
we find the threshold conditions for the second parametric resonance:

mmin =
2√
Q

, Qmin =
4

m2
, ωres =

(
1 +

5
12

m2

)
ω0. (31)

Stationary oscillations occurring at the threshold of the second parametric
resonance are illustrated by figure 10.

In order to observe the mode of parametric regeneration (stationary oscillations
at the threshold of the second parametric resonance) for a given modulation depth
m in the simulation experiment, we should choose the period of modulation and the
quality factor according to Eq. (31), and set properly the initial conditions. For the
threshold Eqs. (29) give S2 = C2. Therefore,

ϕ(0) = C2(1 +
2
3
m), ϕ̇(0) = ω0 C2(1− 4

3
m). (32)
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Figure 10. The phase trajectory of stationary oscillations occurring at the
threshold of the second instability interval (left) and the graphs of the angular
velocity and of the radial velocity of the weights (right).

To produce stationary oscillations, we can choose arbitrarily an initial angular
displacement ϕ(0), and enter an initial angular velocity ϕ̇(0) = ω0ϕ(0)(1 − 2m), as
follows from Eq. (32). Or, equivalently, we can choose an arbitrary initial velocity
ϕ̇(0), and enter an initial displacement ϕ(0) = ϕ̇(0)(1 + 2m)/ω0.

In the absence of friction the width of the second interval of instability is
proportional to the square of the depth of modulation: ω+ − ω− = m2ω0/4. Eq. (30)
gives the following boundaries of the interval for zero friction:

ω+ =
(

1 +
13
24

m2

)
ω0, ω− =

(
1 +

7
24

m2

)
ω0. (33)

To find the frequencies corresponding to these boundaries with a greater precision,
we should include more harmonics into the trial function ϕ(t), Eq. (26). In the absence
of friction it is more convenient to assume that the motion of the weights along the
rod is described in Eq.(2) by l(t) = l0(1 + m cos ωt) instead of the sine function. In
this case the stationary oscillations at the left boundary of the interval include only
harmonics of the cosine type, and at the right boundary – of the sine type.

The final (rather complicated) expressions for the periods of modulation and for
the relative contributions of high harmonics at the boundaries of the instability interval
show a very good agreement with the simulations. Below we cite the calculated values
for the modulation depth m = 0.3 (30%). The corresponding experimental values are
shown in the parenthesis:

Left (cosine-type) boundary: period T/T0 = 0.9502 (0.9502);
C4/C2 = −0.203 (−0.202); C6/C2 = 0.038 (0.039).

Right (sine-type) boundary: period T/T0 = 0.9727 (0.9727);
S4/S2 = −0.207 (−0.207); S6/S2 = 0.039 (0.039).

For arbitrary values of the modulation depth m the calculated boundaries of this
instability interval are shown by the second “tongue” of T – m diagram in figure 5.

In order to observe stationary oscillations in the simulation experiment for the case
when friction is zero, we should choose the period of modulation corresponding to one
of these boundaries, and set properly the initial conditions. If l(t) = l0(1 + m cos ωt),
for the left boundary we can choose arbitrarily an initial angular displacement ϕ(0) and
zero initial angular velocity. For the right boundary, vice versa, we choose arbitrarily
an initial angular velocity ϕ̇(0) and zero initial displacement.
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Figure 11. The phase trajectory and the time-dependent graphs of stationary
oscillations at the threshold of the third parametric resonance.

7. Resonances of the third and higher orders

Oscillations that occur in conditions of any parametric resonance have a mean period
which is rather close to the natural one. To compensate for or to overcome the
frictional losses by modulation of the moment of inertia, two cycles of modulation
must complete during an integer number n of (almost natural) oscillations of the
rotor: 2T ≈ nT0. The width ∆T of high order resonance bands (of the intervals of
parametric instability) diminishes very quickly as the order n of resonance is increased
– as mn. The index α of the rate of the amplitude growth diminishes also as fast as
does ∆T with the increase in n. Both of these properties make an experimental
observation of parametric resonances of high orders (n > 1) at moderate values of m
very difficult. High-order instability intervals disappear in the presence of very small
friction.

Stationary oscillations at the threshold of parametric resonance of the third order
are shown in figure 11.

In order to find the boundaries of the third instability interval in the absence of
friction, we assume that the weights move according to l(t) = l0(1 + m cos ωt), and
use the trial function ϕ(t) that includes the fundamental harmonic of the frequency
1
2ω and several high odd-numbered harmonics of frequencies 3

2ω, 5
2ω, . . . . Stationary

oscillations at the left boundary comprise only harmonics of cosine type, and at the
right boundary – of sine type. After substituting the trial function into the differential
equation

d

dt

[
(1 + m cos ωt)2

d

dt
ϕ

]
+ ω2

0ϕ = 0, (34)

we equate to zero the coefficients of cosine (or sine) functions with frequencies 1
2ω,

3
2ω, 5

2ω, . . . , and thus get a system of homogeneous equations for the coefficients C1,
C3, . . . (or S1, S3, . . . ) of harmonic components in the trial function. The condition
of existence of a nontrivial solution to this system yields an equation for the desired
boundaries. This equation is the same as for the boundaries of the principal instability
interval, but this time we look for its approximate solution in the vicinity of 3

2T0

(instead of 1
2T0). Third harmonic component (frequency 3

2ω) dominates the spectrum.
To increase precision, more harmonics should be included into the trial function

ϕ(t). We cite below the values of the period and of the relative contributions of
different harmonics at stationary oscillations for the modulation depth m = 0.3,
obtained by a calculation in which harmonics up to 13th order were included.
(We use the Mathematica-4 package by Wolfram Research Inc.) The corresponding
experimental values are shown in the parenthesis:
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Figure 12. The phase trajectories and the time-dependent graphs of stationary
oscillations at the boundaries of the third interval of parametric instability.

Left (cosine-type) boundary: period T/T0 = 1.4336 (1.4336);
C1/C3 = 0.107 (0.110); C5/C3 = −0.289 (−0.288); C7/C3 = 0.065 (0.067).

Right (sine-type) boundary: period T/T0 = 1.4369 (1.4369);
S1/S3 = 0.135 (0.136); S5/S3 = −0.291 (−0.292); S7/S3 = 0.066 (0.066).

Stationary oscillations at the boundaries of the third interval of parametric
instability are shown in figure 12.

Similar calculations allow us to find the periods of modulation at which resonances
of higher orders occur. Corresponding ranges of parametric instability are very narrow,
that is, both their boundaries very nearly coincide. We cite below the calculated values
of the modulation periods and the spectral composition of stationary oscillations for
the boundaries of the 4th and 5th resonances (at m = 0.3):

Left (cosine-type) boundary of 4th resonance: period T/T0 = 1.9107 (1.9107);
C2/C4 = 0.219 (0.220); C6/C4 = −0.377 (−0.374);
C8/C4 = 0.100 (0.102); C10/C4 = −0.023 (−0.021).

Right (sine-type) boundary of 4th resonance: period T/T0 = 1.9112 (1.9112);
S2/S4 = 0.222 (0.222); S6/S4 = −0.377 (−0.377);
S8/S4 = 0.100 (0.100); S10/S4 = −0.023 (−0.023).

Left (cosine-type) boundary of 5th resonance: period T/T0 = 2.3872 (2.3872);
C1/C5 = 0.017 (0.019); C3/C5 = 0.319 (0.321);
C7/C5 = −0.459 (−0.466); C9/C5 = 0.124 (0.146).

Right (sine-type) boundary of 5th resonance: period T/T0 = 2.3873 (2.3873);
S1/S5 = 0.020 (0.020); S3/S5 = 0.321 (0.321);
S7/S5 = −0.468 (−0.468); S9/S5 = 0.142 (0.144).
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Figure 13. The spectrum, phase trajectory and time-dependent graphs of
stationary oscillations at the right boundary of the fourth interval of parametric
instability.

Figure 14. The spectrum, phase trajectory and time-dependent graphs of
stationary oscillations at the left boundary of the fifth interval of parametric
instability.

The spectral composition, phase trajectories and time-dependent graphs of
stationary oscillations at the boundaries of the fourth and fifth intervals of parametric
instability are shown in figures 13 and 14, respectively.

Almost exact coincidence of both boundaries for the high order intervals means
that at the period of modulation corresponding to one of the intervals we can observe
actually (in the absence of friction) not a resonant growth but rather stationary
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oscillations of a constant (arbitrarily large) amplitude. From the graphs in figures 13
and 14 we can conclude that at exact tuning to n-order resonance the oscillator
completes just the whole number n of natural oscillations (of varying period and
amplitude) exactly during two cycles of modulation. The process is periodic at
arbitrary initial conditions, in contrast to the boundaries of low orders, for which
special initial conditions are required to provide periodic oscillations.

This behaviour can be explained in terms of the familiar phenomenon of frequency
modulation. For parametric resonances of high orders the weights move along the rod
rather slowly compared to the natural torsional oscillations of the rotor (T À T0).
A slow periodic variation of the moment of inertia means that the current natural
frequency of the oscillator is slowly modulated. We see clearly in figures 13 – 14 how
oscillations slow down when the weights are moved towards the ends of the rotor, and
vice versa. Hence we can consider the motion of the rotor in conditions of a high-
order parametric resonance as a frequency modulated oscillation, in which the natural
oscillation – the dominating harmonic component – plays the role of a carrier.

The spectral composition shown in figures 13 and 14 gives convincing evidence of
this interpretation. The harmonic component with the frequency nω/2 ≈ ω0 has the
greatest amplitude (the carrier). The coefficients Cn−2 and Cn+2 of lateral spectral
components with frequencies (nω/2)±ω have opposite signs and (for n À 1) are nearly
equal in magnitude. This spectrum is characteristic of the frequency modulation.

Concluding remarks

We have developed in this paper a theoretical approach to the phenomenon of
parametric resonance complemented by a computerized experimental investigation.
A simple mathematical model of the physical system (based on a linear differential
equation) is used. The model allows a complete quantitative description of the
parametric excitation, which can be verified by the simulations [3]. Visualization
of motion simultaneously with plotting the graphs of different variables and phase
trajectories makes the simulation experiments very convincing and comprehensible.
This investigation provides a good background for the study of more complicated
nonlinear parametric systems like a pendulum whose length is periodically changed
(a model of the playground swing), or a pendulum with the suspension point driven
periodically in the vertical direction [2].
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