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Abstract. A simple qualitative physical explanation is suggested for the
phenomenon of subharmonic resonances of a rigid planar pendulum whose axis is
forced to oscillate with a high frequency in the vertical direction. An approximate
quantitative theory based on the suggested approach is developed. The spectral
composition of the subharmonic resonances is investigated quantitatively, and the
boundaries of these modes in the parameter space are determined. New related
modes of regular behaviour are described and explained. The conditions of the
inverted pendulum stability are determined with a greater precision than they
have been known earlier. A computer program simulating the physical system
supports the analytical investigation.
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1. Introduction: The physical system

An ordinary rigid planar pendulum whose axis is driven periodically in the vertical
direction is a paradigm of contemporary nonlinear dynamics. This rather simple
mechanical system is also interesting because the differential equation of the pendulum
is frequently encountered in various problems of modern physics. Mechanical
analogues of physical systems allow a direct visualization of motion and thus can
be very useful in gaining an intuitive understanding of complex phenomena [1].
Depending on the frequency and amplitude of forced oscillations of the suspension
point, this seemingly simple mechanical system exhibits a rich variety of nonlinear
phenomena characterized by amazingly different types of motion.

When the external driving frequency is approximately twice the natural frequency
of the pendulum, the lower state of equilibrium becomes unstable, and the system
leaves it executing oscillations whose amplitude increases progressively. This
commonly known phenomenon is called parametric resonance. In contrast to the
case of ordinary resonance caused by a direct influence of some periodic external
force, friction is unable to restrict the growth of parametrically excited oscillations.
The growth of the amplitude is restricted because the period of natural oscillations
increases with the amplitude due to nonlinear properties of the pendulum.

Besides the principal parametric resonance, excited when two driving cycles
occur approximately during one natural oscillation, parametric resonances of higher
orders are possible when two driving cycles occur approximately during two, three
and any other integer number of natural periods. At small (and moderate) driving
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amplitudes, parametrically excited oscillations in all these cases are very much like
the natural ones – their frequency is close to the natural frequency of the pendulum.
The forced oscillation of the pivot at resonant conditions supplies the pendulum with
energy needed to compensate for frictional losses, thus preventing these almost natural
oscillations from damping. With increasing friction, parametric resonances of higher
orders become weaker and disappear.

Another possible kind of regular behaviour of the pendulum is a synchronized
non-uniform unidirectional rotation in a full circle with a period that equals either
the driving period or an integer multiple of this period. More complicated regular
modes of the parametrically forced pendulum are formed by combined rotational
and oscillatory motions synchronized (locked in phase) with oscillations of the pivot.
Different competing modes can coexist at the same values of the driving amplitude
and frequency. Which of these modes is eventually established when the transient is
over depends on the starting conditions.

Behaviour of the pendulum whose axis is forced to oscillate with a frequency from
certain intervals (and at large enough driving amplitudes) can be irregular, chaotic.
Chaotic behaviour of this simple nonlinear system has been a subject of intense interest
during recent decades [2] – [7]. The parametrically forced pendulum can serve as an
excellent physical model for studying chaos as well as various complicated modes of
regular behaviour.

An interesting feature in the behaviour of a rigid pendulum whose suspension
point is forced to vibrate with a high frequency along the vertical line is the dynamic
stabilization of its inverted position. When the frequency and amplitude of these
vibrations are large enough, the inverted pendulum shows no tendency to turn down.
Moreover, at small and moderate deviations from the vertical inverted position the
pendulum tends to return to it. Being deviated, it can execute relatively slow
oscillations about the vertical line on the background of rapid oscillations of the
suspension point. This now well-known curiosity of classical mechanics, probably first
pointed out by Stephenson [8] in 1908, has been explained physically and investigated
experimentally in detail by Pjotr Kapitza [9] in 1951. Not surprisingly, since then
this intriguing system has attracted attention of many researchers, and the theory
of the phenomenon may seem to be well elaborated – see, for example, Landau
[10]. Nevertheless, more and more new features in the behaviour of this apparently
inexhaustible system are reported regularly. Further discoveries concerning general
features and details in the behaviour of parametrically excited inverted pendulum
have been published over the last decade [11] – [18].

Among these recent discoveries, the most important are the destabilization of
the (dynamically stabilized) inverted position at large driving amplitudes through
excitation of period-2 (“flutter”) oscillations (Blackburn, 1992) [11], and the existence
of n-periodic “multiple-nodding” regular oscillations (Acheson, 1995) [13]. However,
the authors who discovered these interesting modes have not suggested any clear
physical explanation to the origin of such “flutter” oscillations, as well as to the
“multiple-nodding” oscillations. In this paper we present a quite simple qualitative
physical explanation to these phenomena, and indicate the regions in the parameter
space where these modes can exist. We show that the period-2 mode (the
“flutter” oscillation) is closely (intimately) related to the commonly known parametric
instability of the non-inverted pendulum, and that the “multiple-nodding” oscillations
(which exist both for the inverted and hanging down pendulums) can be treated
as high order subharmonic resonances of the parametrically driven pendulum. We



Subharmonic resonances of the parametrically driven pendulum 3

focus also on an approximate quantitative theory (leading to the well-known concept
of the effective potential for the slow motion of the pendulum) which can be
developed on the basis of the suggested approach to the problem. The coexistence
of subharmonic resonances of different orders is explained. The spectral composition
of these modes is investigated quantitatively. Conditions of the dynamical stability
of the inverted pendulum are established with a greater precision than they have
been known earlier. A computer program simulating the physical system supports
the analytical investigation. The simulation reveals subtle details of the motion and
aids the analytical study of the subject in a manner that is mutually reinforcing.
The simulation program runs on a PC under MS Windows operating system and is
available through the Web [19].

The paper is organized as follows. After introducing the physical system we
consider briefly the pendulum’s behaviour in the case of rapid oscillations of the pivot
including dynamical stabilization of the inverted pendulum, which is important for
understanding the origin of subharmonic resonances (“multiple-nodding” oscillations).
Then we investigate the spectral composition of subharmonic resonances in the
low-amplitude limit and determine the boundaries of the region in the parameter
space in which these resonances can exist. Next we consider the destabilization of
the dynamically stabilized pendulum (the “flutter” mode) and its relationship with
ordinary parametric resonance. Then the influence of friction is taken into account.
We report also for the first time about several new types of regular behaviour of the
parametrically driven pendulum discovered with the help of computer simulations.

2. The physical model

For simplicity we consider a light rigid rod of length l with a heavy small bob of mass
m on its end and assume that the rod has zero mass. Let the axis of the pendulum be
forced to execute a given harmonic oscillation along the vertical line with a frequency
ω and an amplitude a, i.e., let the motion of the axis be described by the following
equation:

z(t) = a sin ωt or z(t) = a cos ωt. (1)

Depending on the problem under consideration, either sine or cosine time
dependence may be more convenient for calculations. The force of inertia Fin(t)
= −mz̈(t) = mω2z(t) exerted on the bob in the non-inertial frame of reference
associated with the pivot also has the same sinusoidal dependence on time. This force
is equivalent to a periodic modulation of the force of gravity exerted on the pendulum.
If the frequency and/or amplitude of the pivot are large enough (if aω2 > g), for some
part of the driving period the apparent gravity is even directed upward.

An understanding about pendulum’s behaviour in the case of rapid oscillations of
its pivot is an important prerequisite for the physical explanation of subharmonic
resonances (“multiple-nodding” oscillations). Details of the physical mechanism
responsible for the dynamical stabilization of the inverted pendulum can be found
in [20]. The principal idea is utterly simple: Although the mean value of the force
of inertia Fin(t), averaged over the short period of these oscillations, is zero, the
averaged over the period value of its torque about the axis is not zero. The reason is
that both the force Fin(t) and the arm of this force vary with time in the same way
synchronously with the axis’ vibrations. This non-zero mean torque tends to align the
pendulum along the direction of forced oscillations of the axis. For given values of the
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driving frequency and amplitude, the mean torque of the force of inertia depends only
on the angle of the pendulum’s deflection from the direction of the pivot’s vibration.

In the absence of gravity the inertial torque gives a clear physical explanation
for existence of the two equivalent stable equilibrium positions that correspond to
the two preferable orientations of the pendulum’s rod along the direction of the
pivot’s vibration. With gravity, the inverted pendulum is stable with respect to small
deviations from this position provided the mean torque of the force of inertia is greater
than the torque of the force of gravity that tends to tip the pendulum down. This
occurs when the following condition is fulfilled: a2ω2 > 2gl, or (a/l)(ω/ω0) >

√
2 (see,

e.g., [20]). However, this is only an approximate criterion for dynamic stability of the
inverted pendulum, which is valid at small amplitudes of forced vibrations of the pivot
(a ¿ l). Below we establish a more precise criterion [see equation (12)].

To provide the dynamic stabilization of the inverted pendulum within some finite
interval of the angles of deflection from the vertical position, the product of the
normalized driving amplitude and the normalized driving frequency must be greater
than

√
2 by a finite value. We note that the explanation of the physical reason for the

dynamic stabilization of the inverted pendulum in [20] is free from the restriction of
small angles. In particular, for given values of the driving frequency ω and amplitude
a, this approach allows us to find the maximal admissible angular deflection from
the inverted vertical position θmax below which the pendulum tends to return to
this position, even when θmax is almost as large as π/2: cos θmax = 2gl/(a2ω2).
Being deflected from the vertical position by an angle that does not exceed θmax,
the pendulum will execute relatively slow oscillations about this inverted position.
This motion is executed both under the mean torque of the force of inertia and the
force of gravity, and can be described by a slow-varying function ψ(t) satisfying the
following approximate differential equation (if friction is ignored):

ψ̈ + ω2
0 sin ψ +

1
2

a2

l2
ω2 cos ψ sin ψ = 0. (2)

Rapid oscillations caused by forced vibrations of the axis superimpose on this
slow motion of the pendulum. With friction, the slow motion gradually damps, and
the pendulum wobbles up settling eventually in the inverted position.

Similar behaviour of the pendulum can be observed when it is deflected from the
lower vertical position. But in this case the frequency of the smooth slow oscillations
is greater than for the inverted pendulum. The frequencies ωup and ωdown of small
slow oscillations about the inverted position and the lower vertical position are given
by the following expressions:

ω2
up = ω2(a/l)2/2− ω2

0 , ω2
down = ω2(a/l)2/2 + ω2

0 . (3)

Substituting ω0 = 0 into these formulas, we get the expression ωslow = ω(a/l)/
√

2
for the frequency of small slow oscillations of the pendulum with vibrating axis in the
absence of the gravitational force. These oscillations can occur about any of the two
equivalent dynamically stabilized equilibrium positions located opposite one another
along the direction of forced vibrations of the axis.

Experimental verification of equations (3) is given by the graphs in Figure 1,
obtained in the simulation. In this example the driving frequency ω = 16ω0 and
the driving amplitude a = 0.153 l, so that (a2/2l2)ω2 = 3ω2

0 . Thus equation (3)
provides for the frequency of slow oscillations about the downward position the value
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Figure 1. The graphs of oscillations of the rigid planar pendulum with vibrating
axis about the dynamically stabilized lower and upper equilibrium positions
respectively, obtained by a numerical integration of the exact differential equation,
equation (5), for the momentary angular deflection ϕ(t). The sinusoidal graphs
of the axis motion z(t) = −a cos ωt are shown by thin lines.

ωdown = 2ω0 that is exactly twice the natural frequency (Tdown = T0/2), while for
the frequency of slow oscillations about the upward vertical position ωup =

√
2ω0

(Tup = T0/
√

2). The graphs in Figure 1 agree well with these values (two periods
Tdown of slow oscillation about hanging position are completed during exactly one
natural period T0 that equals 16T ).

The graphs in Figure 1 also show clearly that the smooth motion is distorted by
the high frequency oscillations most of all near the utmost deflections of the pendulum,
and these distortions are relatively small while the pendulum crosses the equilibrium
position. This implies that the momentary deflection angle ϕ(t) can be represented
approximately as a superposition of the slow varying mean angle ψ(t) and the high
frequency term whose angular amplitude is proportional to sine of ψ(t):

ϕ(t) ≈ ψ(t)− (z/l) sin ψ(t) = ψ(t)− (a/l) sin ψ(t) sin ωt. (4)

Indeed, the angular amplitude of the rapid (second) term in equation (4) is the
greatest at the extreme deflections of the pendulum, and this amplitude vanishes
when the pendulum in its smooth motion crosses each of the vertical positions.
An observer that doesn’t notice the rapid oscillating motion of the pendulum can
consider simply that the system moves in an effective potential field U = U(ψ).
Such a potential function that governs the smooth motion of the pendulum averaged
over the rapid oscillations was first introduced by Landau [10], and derived by
several different methods afterwards (see, for example, [14], [15], or [20]). Certainly,
some subtle details in the motion of the pendulum revealed by the simulations are
lost in the approximate analysis, which refers only to the slow component of the
investigated motion. Nevertheless, this analysis allows us to clearly interpret the
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principal features of the physical system under consideration, and even to evaluate
such typically nonlinear properties as the dependence of the period on the amplitude
of slow oscillations.

The simulation is based on a numerical integration of the exact differential
equation for the momentary angular deflection ϕ(t). This equation includes, beside the
torque of the force of gravity, the instantaneous (not averaged over the fast period)
value of the torque exerted on the pendulum by the force of inertia that depends
explicitly on time t:

ϕ̈ + 2γϕ̇ + (ω2
0 −

a

l
ω2 sin ωt) sin ϕ = 0. (5)

The second term of equation (5) takes into account the braking frictional torque,
assumed to be proportional to the momentary angular velocity ϕ̇ in the mathematical
model of the simulated system. The damping constant γ is inversely proportional to
the quality factor Q commonly used to characterize the viscous friction: Q = ω0/2γ. In
the absence of gravity the parametrically driven pendulum is described by equation (5)
with ω0 = 0. Since in this case the notion of natural frequency loses its sense, it is
impossible to use the quality factor defined as Q = ω0/2γ to characterize friction,
but instead we can use another dimensionless quantity ω/2γ, where ω is the driving
frequency.

We note that oscillations about the inverted position can be formally described
by the same differential equation, equation (5), with negative values of ω2

0 = g/l. In
other words, we can consider ω2

0 as a control parameter whose variation is physically
equivalent to changing the gravitational force exerted on the pendulum. When
this control parameter is diminished through zero to negative values, the constant
(gravitational) torque in equation (5) first turns to zero and then changes its sign to
the opposite. Such a “gravity” tends to bring the pendulum into the inverted position
ϕ = π, destabilizing the position ϕ = 0 of the unforced pendulum: The inverted
position with ω2

0 < 0 in equation (5) is equivalent to the hanging down position with
the positive value of ω2

0 of the same magnitude.

3. Subharmonic resonances of high orders

When the driving amplitude and frequency lie within certain ranges, the pendulum,
instead of gradually approaching the equilibrium position (either dynamically
stabilized inverted position or ordinary downward position) by the process of damped
slow oscillations, can be trapped in a n-periodic limit cycle locked in phase to the rapid
forced vibration of the axis. In such oscillations the phase trajectory repeats itself
after n driving periods T . Since the motion has period nT , and the frequency of its
fundamental harmonic equals ω/n (where ω is the driving frequency), this phenomenon
can be called a subharmonic resonance of n-th order. For the inverted pendulum with
a vibrating pivot, periodic oscillations of this type were first described by Acheson
[13], who called them “multiple-nodding” oscillations. An example of such stationary
oscillations whose period equals ten periods of the axis is shown in Figure 2.

The left-hand upper part of the figure shows the spatial trajectory of the
pendulum’s bob at these multiple-nodding oscillations. The left-hand lower part shows
the closed looping trajectory in the phase plane (ϕ, ϕ̇). In the absence of friction
the backward motion of the pendulum occurs along the same path, and the phase
trajectory has the symmetry of reflection about the axes. Right-hand side of Figure 2,
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Figure 2. The spatial path, phase orbit with Poincaré sections, and graphs
of stationary period-10 oscillations. The graphs are obtained by a numerical
integration of the exact differential equation, equation (5) with ω0 = 0 and γ = 0,
for the momentary angular deflection ϕ(t). Thin lines show separate harmonics.
The fundamental harmonic with the frequency ω/10 dominates in the spectrum.
The 9th and 11th harmonics have nearly equal amplitudes. Graphs of the axis
motion z(t) and ż(t) are also shown.

alongside the graphs of ϕ(t) and ϕ̇(t), shows also their harmonic components and the
graphs of the pivot oscillations. The fundamental harmonic whose period equals ten
driving periods dominates in the spectrum. We may treat it as a subharmonic (as an
“undertone”) of the driving oscillation. This harmonic describes the discussed above
smooth component of the compound period-10 oscillation.

Next we show that the approximate approach based on the effective potential
for the slow motion provides a simple qualitative physical explanation for such an
extraordinary and even counterintuitive at first sight behaviour of the pendulum.
Moreover, for subharmonic resonances with n À 1 this approach yields rather good
quantitative results.

First of all we emphasize that these modes of regular n-periodic oscillations
(subharmonic resonances), which have been discovered (see [13]) in investigations of
the dynamically stabilized inverted pendulum with a vibrating pivot, are not specific
for the inverted pendulum. Similar oscillations can be executed also (at appropriate
values of the driving parameters) about the ordinary (downward hanging) equilibrium
position. Actually, the origin of subharmonic resonances is independent of gravity,
because such synchronized with the pivot “multiple-nodding” oscillations can occur
also in the absence of gravity about any of the two equivalent dynamically stabilized
equilibrium positions of the pendulum with a vibrating axis. Even the pendulum
with the horizontally vibrating pivot can execute similar n-periodic oscillations about
each of the two lateral equilibrium positions that are displaced downward by the
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gravitational force from the horizontal line of the pivot’s oscillations.‡
The natural slow oscillatory motion in the effective potential well is almost

periodic (exactly periodic in the absence of friction). A subharmonic resonance of order
n can occur if one cycle of this slow motion covers approximately n driving periods,
that is, when the driving frequency ω is close to an integer multiple n of the natural
frequency of slow oscillations near either the inverted or the ordinary equilibrium
position: ω = nωup or ω = nωdown. In this case the phase locking can occur, in
which one cycle of the slow motion is completed exactly during n driving periods.
Synchronization of these modes with the oscillations of the pivot creates conditions
for systematic supplying the pendulum with the energy needed to compensate for
dissipation, and the whole process becomes exactly periodic.

For small amplitudes of the slow oscillations, each of the minima of the effective
potential can be approximated by a parabolic well in which the smooth component
of motion is almost harmonic. Equating ωslow to ω/n, we find the threshold (low-
amplitude) conditions for the subharmonic resonance of order n. As an example how
the approach based on the effective potential allows us to explain properties of these
n-periodic oscillations and predict conditions at which they can occur, we consider first
the simplest case of the pendulum in the absence of gravity, or, which is essentially
the same, the limiting case of very high driving frequencies ω À ω0 (ω/ω0 → ∞).
In this limit both equilibrium positions (ordinary and inverted) are equivalent, and
the normalized driving amplitude m = a/l is the only parameter to be predicted as
a required condition of the subharmonic resonance of order n (of synchronized with
the pivot n-periodic oscillations of the pendulum). According to equation (3), at
ω0 = 0 the frequency of slow oscillations is given by ωslow/ω = m/

√
2, whence for the

subharmonic resonance of order n, at which the period of the slow motion equals n
periods of the axis, mmin =

√
2/(ω/ωslow) =

√
2/n. For the subharmonic resonance

of 10th order (n = 10) shown in Figure 2 we find mmin =
√

2/10 = 0.141. This value
is rather close to the predictions of a more precise theory of the boundaries for these
modes based on the linearized differential equation of the system (see equation (13)
below), which gives for such period-10 small oscillations in the absence of gravity the
normalized driving amplitude mmin = 99/(50

√
202) = 0.139. The latter value agrees

perfectly well with the simulation experiment in conditions of small amplitudes.
In the presence of gravity, assuming ωdown, up = ω/n (n driving cycles during one

cycle of the slow oscillation), we find for the minimal normalized driving amplitudes
(for the boundaries of the subharmonic resonances) the values

mmin =
√

2(1/n2 ∓ k), (6)

where k = (ω0/ω)2. As we already indicated above, negative values of the parameter
k (negative ω2

0 values) can be treated as referring to the inverted pendulum. Then the
boundaries of subharmonic resonances can be expressed both for the hanging down
and inverted pendulum by the same formula: mmin =

√
2(1/n2 − k). The limit of this

expression at n → ∞ gives the mentioned earlier approximate condition of stability
of the inverted pendulum: mmin =

√−2k (where k < 0).
Being based on a decomposition of motion on slow oscillations and rapid

vibrations with the driving frequency, equation (6) is approximate and valid if the

‡ At horizontal forcing of the pivot the hanging down vertical equilibrium position destabilizes and
two symmetric lateral dynamically stabilized equilibrium positions appear if the driving amplitude
and frequency satisfy the same condition that corresponds to the dynamic stabilization of the inverted
pendulum at vertical forcing.
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amplitude of constrained vibration of the axis is small compared to the pendulum’s
length (a ¿ l). Moreover, in the presence of gravity the driving frequency must
be much greater than the frequency of small natural oscillations of the pendulum
(ω À ω0). These restrictions mean that we should not expect from the discussed here
approach to give an exhaustive description of the parametrically driven pendulum in
all cases.

In particular, within certain ranges of the system parameters (in the intervals
of parametric instability) the lower position of the pendulum becomes unstable, as
we already mentioned earlier. However, parametric resonance, as well as the modes
of chaotic behaviour, occur at such driving frequencies (for the principal parametric
resonance ω ≈ 2ω0) that do not satisfy the conditions of applicability of the approach
used above. Next we show how to get instead of equation (6) the exact condition for
the boundaries of the subharmonic resonances.

The spectrum of stationary n-period oscillations consists primarily of the
fundamental harmonic A sin(ωt/n) with the frequency ω/n, and two high harmonics
of the orders n − 1 and n + 1. Indeed, according to equation (4) with sinψ ≈ ψ, in
this approximation

ϕ(t) = ψ(t)−m sin ψ cos ωt ≈ ψ(t)−mψ cos ωt =
= A sin(ωt/n)−mA sin(ωt/n) cos ωt = (7)
= A sin(ωt/n)− (mA/2) sin[(n− 1)ωt/n] + (mA/2) sin[(n + 1)ωt/n].

This spectral composition is clearly seen from the plots in Figure 2. While the
pendulum crosses the equilibrium position, both high harmonics add in the opposite
phases and thus almost don’t distort the smooth motion (described by the principal
harmonic). Near the utmost deflections the phases of high harmonics coincide, and
thus here their sum causes the most serious distortions of the smooth motion.

According to equation (7), both high harmonics have equal amplitudes (m/2)A.
However, we see from the plots in Fig. 2 that these amplitudes are slightly different.
Therefore we can try to improve the approximate solution for ϕ(t), equation (7),
as well as the theoretical values for the lower boundaries of subharmonic resonances,
equation (6), by assuming for the possible solution a similar spectrum but with unequal
amplitudes, An−1 and An+1, of the two high harmonics (for n > 2, the case of n = 2
will be considered separately):

ϕ(t) = A1 sin(ωt/n) + An−1 sin[(n− 1)ωt/n] + An+1 sin[(n + 1)ωt/n]. (8)

Since oscillations at the boundaries have infinitely small amplitudes, we can use
instead of equation (5) the following linearized (Mathieu) equation:

ϕ̈ + 2γϕ̇ + (ω2
0 −mω2 sin ωt)ϕ = 0. (9)

Substituting ϕ(t), equation (8), into this equation (with γ = 0) and expanding
the products of trigonometric functions, we obtain a system of approximate equations
for the coefficients A1, An−1 and An+1:

2(kn2 − 1)A1 + mn2An−1 −mn2An+1 = 0,

mn2A1 + 2[n2(k − 1) + 2n− 1]An−1 = 0, (10)
−mn2A1 + 2[n2(k − 1)− 2n− 1]An+1 = 0.

The homogeneous system has a nontrivial solution if its determinant equals zero.
This condition yields an equation for the corresponding critical (minimal) driving
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amplitude mmin at which n-period mode ϕ(t), equation (8), can exist. Solving the
equation, we find:

m2
min =

2
n4

[n6k(k − 1)2 − n4(3k2 + 1) + n2(3k + 2)− 1]
[n2(1− k) + 1]

. (11)

Then, for this critical driving amplitude mmin, the fractional amplitudes An−1/A1

and An+1/A1 of high harmonics for a given order n can be easily found as the solutions
to the homogeneous system of equations, equations (10).

The limit of mmin, equation (11), at n → ∞ gives an improved formula for the
lower boundary of the dynamic stabilization of the inverted pendulum instead of the
commonly known (and mentioned above) approximate criterion mmin =

√−2k:

mmin =
√
−2k(1− k) (k < 0). (12)

Figure 3. The normalized driving amplitude m = a/l versus k = (ω0/ω)2

(inverse normalized driving frequency squared) at the boundaries of the dynamic
stabilization of the inverted pendulum (the left curve marked as n →∞), and at
subharmonic resonances of several orders n (see text for detail).

The minimal amplitude mmin that provides the dynamic stabilization is shown
as a function of k = (ω0/ω)2 (inverse normalized driving frequency squared) by the
left curve (n → ∞) in Figure 3. The other curves to the right from this boundary
show the dependence on k of minimal driving amplitudes for which the subharmonic
resonances of several orders can exist (the first curve for n = 6 and the others for n
values diminishing down to n = 2 from left to right). At positive values of k these
curves correspond to the subharmonic resonances of the hanging down parametrically
excited pendulum. Subharmonic oscillations of a given order n (for n > 2) are possible
to the left of k = 1/n2, that is, for the driving frequency ω > nω0. The curves in
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Figure 3 show that as the driving frequency ω is increased beyond the value nω0

(i.e., as k is decreased from the critical value 1/n2 toward zero), the threshold driving
amplitude (over which n-order subharmonic oscillations are possible) rapidly increases.
The limit of very high driving frequency (ω/ω0 →∞), in which the gravitational force
is insignificant compared with the force of inertia (or, which is essentially the same,
the limit of zero gravity ω0/ω → 0), corresponds to k = 0, that is, to the points of
intersection of the curves in Figure 3 with the m-axis. The continuations of these
curves further to negative k values describe the transition through zero gravity to the
“gravity” directed upward, which is equivalent to the case of an inverted pendulum in
ordinary (directed downward) gravitational field. Therefore these curves at negative
k values give the threshold driving amplitudes for subharmonic resonances of the
inverted pendulum.§

A complete investigation of the parametrically excited pendulum is complicated
by the extensive set of parameters that characterize the system (ω0, ω, a, γ). A
considerable simplification is achieved by eliminating one the parameters, namely, the
natural frequency ω0 =

√
g/l, when we turn to studying the pendulum in the absence

of gravity. This simplified model is also useful for qualitative understanding of the
pendulum’s behaviour in the presence of gravity in cases of high driving frequency
and/or large driving amplitude, when the gravitational force plays the role of a
small addition to the force of inertia. Many of the mentioned above complicated
counterintuitive modes are not related to the force of gravity, and can be studied in
their purest form when they are observed in the simple device with the oscillating
pivot in the absence of gravity, which is described by equation (5) with ω0 = 0.

The points of intersection of the curves in Figure 3 with the m-axis, corresponding
to the threshold conditions at zero gravity (k = 0), give, according to equation (11),
the following values of the normalized driving amplitudes:

mmin =
√

2(n2 − 1)
n2
√

n2 + 1
. (13)

The fractional amplitudes An−1/A1 and An+1/A1 of the most important high
harmonics of ϕ(t) [expressed approximately by equation (8)] for the case of zero gravity
(k = 0) are given by the following formulas:

An−1

A1
=

n + 1√
2
√

n2 + 1(n− 1)
,

An+1

A1
=

n− 1√
2
√

n2 + 1(n + 1)
. (14)

These theoretical values for the boundaries mmin and amplitudes of high
harmonics An−1/A1 and An+1/A1 for resonances of different orders n agree well with
the simulation experiments. Over the boundaries additional components appear in
the spectrum of resonant oscillations (see below). Figures 4 – 5 show the graphs of
subharmonic oscillations for n = 8 and n = 6; Figures 8 – 10 show the graphs for n =
5, 4, and 3, obtained in the simulations.

For subharmonic resonances of high orders (n À 1), equation (13) in the case
of zero gravity yields the approximate value mmin ≈ √

2/n obtained earlier with
the help of the simple approach which treats the condition of n-order subharmonic
resonance as the coincidence of n driving periods with one period of the slow motion
of the pendulum near the bottom of the effective potential well. The fractional

§ Actually the curves in Figure 3 are plotted not according to equation (11), but rather with the
help of a somewhat more comlicated formula (not cited in this paper), which is obtained by holding
one more high order harmonic component in the trial function ϕ(t).
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Figure 4. The spatial path, phase orbit with Poincaré sections, and graphs
of large-amplitude stationary period-8 oscillations. The fundamental harmonic
with the frequency ω/8 dominates in the spectrum. This harmonic describes the
smooth (slow) motion of the pendulum. The most important high harmonics
have frequencies 7ω/8 and 9ω/8. At large swing the third harmonic (frequency
3ω/8) is noticeable. This spectral component reflects the non-harmonic character
of slow oscillations in the non-parabolic effective potential well.

amplitudes of both high harmonics An−1/A1 and An+1/A1, given by equation (14),
at n À 1 are almost equal and approach to the common value 1/(

√
2n) = mmin/2, in

accordance with equation (7) that describes the n-period subharmonic oscillations as
a superposition of the slow and rapid motions.

With gravity, these complex n-periodic “multiple-nodding” modes exist both for
the inverted and non-inverted pendulum.

4. Coexistence of subharmonic resonances with different n

Estimating conditions for n-periodic oscillations with the help of equation (3), we
assume the slow motion of the pendulum in the effective potential well to be simple
harmonic, which is true only if this motion is limited to a small vicinity of the bottom
of this well. Therefore we get the lower limit for the driving amplitude at which
n-periodic oscillations of only infinitely small amplitude can occur. Smooth non-
harmonic oscillations of a finite angular excursion that extends over the slanting slopes
of the non-parabolic effective potential well are characterized by a greater period than
the small-amplitude harmonic oscillations executed just over the parabolic bottom of
this well. Therefore large-amplitude period-8 oscillations shown in Figure 4 (their
swing equals 80◦) occur at a considerably greater value of the driving amplitude
(a = 0.265 l) than the critical (threshold) value amin = 0.173 l.

For the oscillations of a large swing shown in Figure 4, the contribution of the
3rd harmonic to the spectrum is also noticeable. In our approximate approach, the
appearance of this spectral component is explained by deviations in the shape of the
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Figure 5. The spatial path, phase orbit, and graphs of period-6 stationary
oscillations coexisting with period-8 oscillations (occurring at the same values of
the pendulum and drive parameters as in figure 4).

effective potential well (in which the slow oscillation is executed) from a parabolic
well, that is, by non-harmonic character of the slow oscillation with a large angular
excursion. Moreover, because the smooth motion is executed in a non-parabolic
effective potential well with a “soft” restoring force, the period becomes longer as the
amplitude is increased. By virtue of this dependence of the period of non-harmonic
smooth motion on the swing, several modes of subharmonic resonance with different
values of n can coexist at the same amplitude and frequency of the pivot. Indeed,
the period of a slow non-harmonic oscillation with some finite amplitude can be equal
to, say, six driving periods, while the period of a slow oscillation with a somewhat
greater amplitude in the same non-parabolic potential well can be equal to eight
driving periods. Figures 4 and 5 show the simulations of such coexisting period-
8 and period-6 modes respectively, obtained at identical parameters of the system.
That is, both smooth motions occur in the same effective potential well. In which of
these competing modes is the pendulum eventually trapped in a certain simulation,
depends on the starting conditions. The set of initial conditions that leads, after
an interval in which transients decay, to a given dynamic equilibrium (to the same
steady-state periodic motion, or attractor) in the limit of large time, constitutes the
basin of attraction of this attractor. The coexisting periodic motions in Figures 4
and 5 represent competing attractors and are characterized by different domains of
attraction.

As noted earlier, in the case of period-8 oscillations of a small swing the approach
based on the effective potential predicts (in the absence of gravity) for the driving
amplitude m = a/l a value of

√
2/8 = 0.177 which is rather close to the exact low-

amplitude theoretical limit (a/l = 0.173). To obtain the slow oscillations of a smaller
period (say, of six driving periods), we should increase the driving amplitude. Indeed,
if ωslow = ω/6, equation (3) yields a greater value a/l =

√
2/6 = 0.236. However,
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for such period-6 oscillations this predicted threshold value agrees somewhat worse
with the calculation based on the linearized equation of the system. According to
equation (13), the minimal driving amplitude for period-6 small oscillations in the
absence of gravity equals amin = 35/(18

√
74) l = 0.226 l. This value agrees perfectly

with the simulation experiment. Not surprisingly, for the n-periodic oscillation with
a small n we cannot expect good quantitative predictions from the effective potential
approach because in such cases the period of a “smooth” motion contains only a few
driving periods. The “rapid” component of the motion here is not rapid enough for
good averaging.

Nevertheless, the effective potential approach provides us not only with a
qualitative understanding of these complex periodic modes, but also, being applicable
for large-amplitude motions, explains the coexistence of several n-periodic modes with
different n values at identical system parameters. Figure 6 shows the dependence on
the driving amplitude m = a/l of the fundamental harmonic amplitudes A1 for both
n = 8 and n = 6 modes.

Figure 6. The principal harmonic amplitudes for n = 8 and n = 6 modes versus
the driving amplitude m = a/l given by an approximate theory (see text for
detail) and by the simulation experiment.

Figure 7. The third harmonic amplitude for n = 8 mode versus the amplitude
of the principal harmonic given by the approximate theory (see text) and by the
simulation experiment.

To estimate how the swing of oscillations executed at the subharmonic resonance
of a given order n depends on the excess a− amin of the driving amplitude a over the
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critical (threshold) value amin, and how the fractional amplitude of the third harmonic
depends on the swing, we can expand sin ψ and sin 2ψ in the differential equation that
describes the slow motion, equation (2), in a power series, preserving the two first
terms:

ψ̈ + ω2
0(ψ − 1

6
ψ3) +

1
2
m2ω2(ψ − 2

3
ψ3) = 0. (15)

Here we use again the notation m = a/l for the normalized driving amplitude. We
can try to search for the solution of equation (15) in the form of a superposition of
the fundamental and third harmonics:

ψ = A1 sin ω1t + A3 sin 3ω1t. (16)

Substituting ψ, equation (16), into equation (15) and equating to zero the coefficient
of sinω1t, we find how the frequencies of slow oscillations depend on the amplitude A1:
ω2

down, up = 1
2m2ω2(1− 1

2A2
1)± ω2

0(1− 1
8A2

1). This expression reduces to equation (3)
if A1 → 0. Equating the frequencies ωdown, up to the fundamental harmonic frequency
ω/n , we obtain an approximate dependence of the fundamental harmonic amplitude
A1 on the excess of the normalized driving amplitude over its critical value m−mmin.
For the case ω0 = 0 (absence of gravity) we find:

A1 =
√

2
√

1−m2
min/m2 ≈ 2

√
1−mmin/m. (17)

The latter approximate expression is valid if the driving amplitude only moderately
exceeds the critical value (if m−mmin ¿mmin). For n = 8 and n = 6 the dependencies
of A1 on m are plotted by solid curves in Figure 6 together with experimental values
of A1 obtained by numerical simulations. If the driving amplitude m is greater than
mmin = 0.226 for n = 6, each of the subharmonic oscillations with n = 8 and n = 6
can exist at the same values of the driving parameters.

The amplitude A3 of the third harmonic in equation (16) can be estimated
similarly by equating to zero the coefficient of cos 3ω1t, when ψ from equation (16)
is substituted into equation (15). It is convenient to express A3 as a function of the
amplitude A1 of the slow motion: A3 = 1

3A3
1/(16− 7A2

1). The corresponding graph is
shown by a solid line in Figure 7. The points refer to the simulation of the subharmonic
oscillations with n = 8.

Friction introduces a phase shift between forced oscillations of the pivot and
harmonics of the steady-state n-periodic motion of the pendulum. By virtue of this
phase shift the pendulum is supplied with energy needed to compensate for frictional
losses. With friction, the direct and backward spatial paths of the pendulum do not
coincide, and the symmetry of the phase trajectory with respect to the ordinate axis
is destroyed. This is clearly seen from a comparison of Figures 4 or 5 for subharmonic
resonances in the presence of weak friction with Figure 2, which refers to an idealized
case in which friction is absent.

5. The upper boundary of the dynamic stability and the principal
parametric resonance

When the amplitude a of the pivot vibrations is increased beyond a certain critical
value amax, the dynamically stabilized inverted position of the pendulum loses its
stability. After a disturbance the pendulum does not come to rest in the up position,
no matter how small the release angle, but instead eventually settles into a finite
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Figure 8. The spatial path, phase orbit with Poincaré sections, and graphs of
period-5 oscillations. The graphs are obtained by a numerical integration of the
exact differential equation, equation (5), for the momentary angular deflection of
the pendulum ϕ(t). Separate harmonics are shown by thin lines. The fundamental
harmonic (frequency ω/5) dominates in the spectrum. Next the 4th and 6th
harmonics (frequencies 4ω/5 and 6ω/5) contribute to a considerable extent. At
large swing the second harmonic (frequency 2ω/5) is also noticeable.

Figure 9. The spatial path, phase orbit, and graphs of period-4 oscillations.
This example shows ”double-nodding” oscillations about one of the dynamically
stabilized equilibrium positions in the absence of gravity.
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Figure 10. The spatial path, phase orbit, and graphs of period-3 oscillations.

amplitude steady-state oscillation (about the inverted vertical position) whose period
is twice the driving period. This loss of stability of the inverted pendulum has
been first described by Blackburn et al. [11] (the “flutter” mode) and demonstrated
experimentally in [12]. The latest numerical investigation of the bifurcations associated
with the stability of the inverted state can be found in [7]. The graphs and the double-
lobed phase trajectory of such oscillations are shown in Figure 11.

Obviously, these steady-state oscillations can be regarded as a special case of
subharmonic resonances, specifically, the case with n = 2. As we already mentioned,
for small values of n it is impossible to correctly represent the pendulum motion as
consisting of the slow and rapid components. The driving amplitude amax is not
small compared with the length l of the pendulum. Consequently, this case occurs
beyond the limits of applicability of the approach based on the effective potential. This
approach cannot explain the destabilization of the inverted pendulum, as well as the
loss of stability of the hanging down pendulum at conditions of ordinary parametric
resonance. (In the latter case the driving amplitude can be small, but the necessary
driving frequency is not high enough for the separation of rapid and slow motions.)

However, the simulation shows (see Figure 11) a very simple spectral composition
of period-2 steady oscillations occurring over the upper boundary of dynamic stability:
the fundamental harmonic whose frequency equals ω/2 (half the driving frequency
ω) with a small addition of the third harmonic with the frequency 3ω/2. We
note that large-amplitude oscillations of the non-inverted pendulum in conditions of
the principal parametric resonance are characterized by a similar spectrum. This
similarity of the spectra is by no means occasional: both the ordinary parametric
resonance and the period-2 “flutter” mode that destroys the dynamic stability of
the inverted state belong essentially to the same branch of possible steady-state
period-2 oscillations of the parametrically excited pendulum. Therefore the upper
boundary of dynamic stability for the inverted pendulum can be found directly from
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Figure 11. Stationary period-2 oscillations occurring over the upper boundary of
dynamic stability (the “flutter” mode). The spectrum consists of the fundamental
harmonic (frequency ω/2) and the third harmonic (frequency 3ω/2).

the linearized differential equation of the system, equation (9), by the same method
that is commonly used for determination of conditions which lead to the loss of stability
of the non-inverted pendulum through excitation of ordinary parametric resonance
(the ranges of parametric instability; see, for example, [10]). We can apply the
linearized equation to this problem because at the boundary of dynamic stability
the amplitude of oscillations is infinitely small. The periodic solution to equation (9),
which corresponds to the boundary of instability, can be represented as a superposition
of the fundamental harmonic whose frequency ω/2 equals half the driving frequency,
and the third harmonic with the frequency 3ω/2:

ϕ(t) = A1 sin(ωt/2) + A3 sin(3ωt/2). (18)

Substituting ϕ(t) from equation (18) into the linearized differential equation,
equation (9), with γ = 0 and expanding the products of trigonometric functions,
we obtain an expression, in which we should equate to zero the coefficients of
sin(ωt/2) and sin(3ωt/2). Thus we get a system of homogeneous equations for the
coefficients A1 and A3, which has a nontrivial solution when its determinant equals
zero. This requirement yields a quadratic equation for the desired normalized critical
driving amplitude amax/l = mmax. The relevant root of this equation (in the case
ω0 = 0 which corresponds to the absence of gravity or to the high frequency limit
of the pivot oscillations with gravity) is mmax = 3(

√
13 − 3)/4 = 0.454, and the

corresponding ratio of amplitudes of the third harmonic to the fundamental one equals
A3/A1 = (

√
13−3)/6 = 0.101. A somewhat more complicated calculation in which the

higher harmonics (up to the 7th) in ϕ(t) are taken into account yields for mmax and
A3/A1 the values that coincide (within the assumed accuracy) with those cited above.
These values agree well with the simulation experiment in conditions of the absence
of gravity (ω0 = 0) and very small angular excursion of the pendulum. When the
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normalized amplitude of the pivot m = a/l exceeds the critical value mmax = 0.454,
the swing of the period-2 “flutter” oscillation (amplitude A1 of the fundamental
harmonic) increases in proportion to the square root of this excess: A1 ∝

√
a− amax.

This dependence follows from the nonlinear differential equation of the pendulum,
equation (5), if sin ϕ in it is approximated as ϕ− ϕ3/6, and also agrees well with the
simulation experiment for amplitudes up to 45◦.

As the normalized amplitude m = a/l of the pivot is increased over the value
0.555, the symmetry-breaking bifurcation occurs: The angular excursions of the
pendulum to one side and to the other become different, destroying the spatial
symmetry of the oscillation and hence the symmetry of the phase orbit. As the pivot
amplitude is increased further, after m = 0.565 the system undergoes a sequence of
period-doubling bifurcations, and finally, at m = 0.56622 (for Q = ω/2γ = 20), the
oscillatory motion of the pendulum becomes replaced, at the end of a very long chaotic
transient, by a regular unidirectional period-1 rotation.

Similar (though more complicated) theoretical investigation of the boundary
conditions for period-2 stationary oscillations in the presence of gravity allows us
to obtain the dependence of the critical (destabilizing) amplitude m of the pivot on
the driving frequency ω. In terms of k = (ω0/ω)2 this dependence has the following
form:

mmax = (
√

117− 232k + 80k2 − 9 + 4k)/4. (19)

The graph of this boundary is shown in Figure 3 by the curve marked as n = 2.
The critical driving amplitude tends to zero as k → 1/4 (as ω → 2ω0). This condition
corresponds to ordinary parametric resonance of the hanging down pendulum: At
small driving amplitudes this resonance is excited if the driving frequency equals the
doubled natural frequency. If the driving frequency exceeds 2ω0 (that is, if k < 0.25),
a finite driving amplitude is required for infinitely small steady parametric oscillations
even in the absence of friction.

The curve n = 2 intersects the ordinate axis at m = 3(
√

13− 3)/4 = 0.454. This
case (k = 0) corresponds to the mentioned above limit of a very high driving frequency
(ω/ω0 → ∞) or zero gravity (ω0 = 0), so that m = 0.454 gives the upper limit of
stability for each of the two dynamically stabilized equivalent equilibrium positions.
The continuation of this curve to the region of negative k values corresponds to the
transition from ordinary downward gravity through zero to “negative,” or upward
“gravity,” or, which is the same, to the case of inverted pendulum in ordinary (directed
down) gravitational field. Thus, the same formula, equation (19), gives the driving
amplitude (as a function of the driving frequency) at which both the equilibrium
position of the hanging down pendulum is destabilized due to excitation of ordinary
parametric oscillations, and the dynamically stabilized inverted equilibrium position
is destabilized due to excitation of period-2 “flutter” oscillations. We can treat this
as an indication that both phenomena are closely related and have common physical
nature. All the curves that correspond to subharmonic resonances of higher orders
(n > 2) lie between this curve and the lower boundary of dynamical stabilization of
the inverted pendulum (curve n →∞ in Figure 3).

Actually, equation (19) in the vicinity of k = 1/4 (ω = 2ω0) gives both boundaries
of the instability interval that surrounds the principal parametric resonance. For
k > 1/4 (ω < 2ω0) equation (19) yields negative m whose absolute value |m|
corresponds to stationary oscillations at the other boundary (to the right of k = 0.25,
see Figure 3). Such oscillations are also represented by two harmonic components with
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frequencies ω/2 and 3ω/2, but their phases differ from those in equation (18) – these
harmonics are of cosine type (for m > 0). Periodic oscillations at this boundary are
unstable and after some time either generate a chaotic process with random revolutions
and oscillations (at sufficiently large driving amplitudes), or eventually come to a
synchronized rotation or to steady (large amplitude) oscillations corresponding to
the other (sine-type) stable branch. Such steady-state oscillations are almost purely
sinusoidal even if they have a very large amplitude (exceeding 90 degrees).

Figure 12. The boundaries of parametric instability – driving amplitude versus
normalized driving frequency. 1 and 2 – boundaries of the principal interval of
parametric instability (ω ≈ 2ω0) for the non-inverted pendulum in the absence
of friction, 3 – the same with friction (Q = 5.0), 4 and 5 – the upper and lower
boundaries of dynamic stability for the inverted pendulum.

The boundaries of the principal interval of parametric instability are shown by
curves 1 and 2 in Figure 12 as functions of normalized driving frequency ω/ω0 (instead
of more convenient but physically less meaningful quantity k = (ω0/ω)2 used in
Figure 3). For the hanging down pendulum, in the absence of friction the critical
amplitude tends to zero as the frequency of the pivot approaches 2ω0 from either side.
Curve 3 shows in the parameters plane (ω/ω0, a/l) the region of principal parametric
resonance in the presence of friction (for Q = ω0/2γ = 5.0). The non-inverted vertical
position of the pendulum whose pivot is vibrating at frequency 2ω0 loses stability
when the normalized amplitude of this vibration exceeds the threshold value of 1/2Q.
This curve almost merges with curves 1 and 2 as the frequency ω deviates from the
resonant value 2ω0. (Detailed discussion of the role of friction see below.) In the high-
frequency limit, for which the role of gravity is negligible, the normalized critical pivot
amplitude a/l tends to the value 0.454 that corresponds to destabilization of the two
symmetric equilibrium positions in the absence of gravity.

Curve 4 of this diagram corresponds to destabilization of the inverted pendulum



Subharmonic resonances of the parametrically driven pendulum 21

by excitation of the “flutter” oscillations. The smaller the frequency of the pivot,
the greater the critical amplitude at which the inverted position becomes unstable.
Actually curve 4 for the boundary of the “flutter” mode is the continuation (through
infinite values of the driving frequency) of curve 2 (or curve 3 in the presence of
friction). The latter is the boundary of ordinary parametric resonance of the non-
inverted pendulum. This relationship between the two phenomena becomes especially
obvious if we compare curve 4 with its equivalent in Figure 3, which is the curve
marked as n = 2 at negative k values.

Curve 5 in Figure 12 shows in the parameter plane the lower boundary of dynamic
stabilization of the inverted pendulum, which is defined in this paper more precisely
than earlier [see equation (12)]. The loss of stability at crossing this boundary occurs
when the effective potential well corresponding to the inverted position has zero depth.
Thus, the region of stability of the inverted pendulum occupies the shaded part of the
parameter plane between curves 5 and 4.

We note that complex n-periodic “multiple-nodding” oscillations (subharmonic
resonances) with n > 2 occur at driving amplitudes below the critical value mmax and
also occupy a region below curve 4 on the parameter plane. However, the existence
of these asymptotic oscillatory states does not influence the local dynamic stability
of the inverted equilibrium position as well as the stability of hanging down position
because the pendulum can be trapped in the n-periodic motions only after a certain
initial disturbance, when its initial state occurs within the corresponding domain of
attraction – otherwise the pendulum comes to rest.

6. The influence of friction

For small (and moderate) driving amplitudes, the principal parametric resonance
occurs at a driving frequency whose value is approximately twice the natural frequency:
ω ≈ 2ω0. We can calculate the threshold of parametric excitation of the hanging down
pendulum in condition of the principal resonance by equating the work done by the
force of inertia during a cycle of a steady motion of the pendulum to the energy
dissipated due to friction. (The work done by the potential gravitational force for a
complete cycle of a periodic motion is zero.) For the calculation of the threshold, it is
convenient to consider that the pivot’s motion is described by z(t) = −a sin ωt rather
than by equation (1). This specific phase of the pivot’s oscillation can be provided by
an appropriate choice of the time origin. In this case the small steady oscillations at
the threshold are approximately described by a cosine function: ϕ(t) = c1 cos ωt/2.

The torque of the force of inertia is Finl sin ϕ, and the elementary work dW done
by this torque during an infinitesimal time interval dt is Finl sinϕdϕ = Finl sin ϕ ϕ̇dt
= −I(a/l)ω2 sin ωt sin ϕ ϕ̇dt ≈ −I(a/l)ω2 sin ωt ϕϕ̇dt, where I is the pendulum’s
moment of inertia. Integrating this expression over the period of the pendulum motion
T = 2π/ω0 = 4π/ω, we find the total work done during T , that is, the increment ∆E
in the total energy E during two driving periods due to the parameter variation:
∆E = Iω2c2

1(a/l)ω/2π.
The work of the frictional force determines the dissipation of mechanical energy.

The elementary (negative) work dW done by the torque of this force during dt is
−2Iγ(ϕ̇)2dt. Integrating this work over the period of oscillation, we find −Iγc2

1ω
2π.

Equating the absolute values of the works done by the force of inertia and the frictional
force yields ω(a/l) = 2γ. Since at resonance ω ≈ 2ω0, we obtain the following
approximate expression for the threshold value of the normalized amplitude of the
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pivot: mthres = athres/l = γ/ω0 = 1/2Q.
If the threshold is exceeded, parametric resonance occurs not only when the

driving frequency is exactly twice the natural frequency, but rather in some interval of
driving frequencies extending on both sides of the resonant frequency ωres = 2ω0. For
a given value of the driving amplitude, the interval the wider the smaller the friction.
To find the boundaries of parametric instability in the presence of friction, we should
include the damping term 2γϕ̇ in the linearized differential equation of the pendulum,
equation (9). With friction, the solution to this equation includes, in contrast to
equation (18), both sine and cosine terms:

ϕ(t) = A1 sin(ωt/2) + A3 sin(3ωt/2) + B1 cos(ωt/2) + B3 cos(3ωt/2). (20)

Substituting ϕ(t), equation (20), into equation (9), we obtain the homogeneous
system of approximate equations for A1, A3, and B1, B3. Desired boundaries of
parametric instability are found from the condition of existence of a non-trivial solution
to this system. Expressions for the boundaries that follow from this calculation are
rather complicated and not cited in this paper. The corresponding graph (for Q = 5)
is shown by curve 3 in Figure 12. The structure of the boundaries in the vicinity of
ω = 2ω0 is shown in detail by three thick curves in Figure 13 for Q = 5, Q = 10,
and for the absence of friction (Q → ∞). If the driving parameters lie in the region
inside these “tongues,” the hanging equilibrium position is unstable, and the pendulum
leaves it after a slightest perturbation. The growth of the amplitude is restricted by
nonlinear effects (by dependence of the natural frequency on the amplitude).

Figure 13. Boundaries of the principal interval of parametric instability
for the hanging down pendulum with friction (normalized driving amplitude
versus normalized driving frequency). Thin curves are plotted according to the
approximate formula, equation (21).

Thin curves in Figure 13 are plotted according to the following approximate
formula for the boundaries (valid for small driving amplitudes near ω = 2ω0):

ω1,2 = (2± 2
√

m2 − 1/(2Q)2 + 7m2/2)ω0. (21)
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Figure 14. The spatial path, phase orbit, and graphs of stationary oscillations
that can be treated as a subharmonic resonance of a fractional order 8/3. The
third harmonic (frequency 3ω/8) dominates in the spectrum.

7. Subharmonic resonances of fractional orders

In this section we report about new modes of regular behaviour of the parametrically
driven pendulum, kindred to the described above subharmonic resonances, which we
have discovered recently in the simulation experiments. As far as we know, such modes
haven’t been described in the literature.

Figure 14 shows a regular period-8 motion of the pendulum, which can be
characterized as a subharmonic resonance of a fractional order, specifically, of the
order 8/3 in this example. Here the amplitude of the fundamental harmonic (whose
frequency equals ω/8) is much smaller than the amplitude of the third harmonic
(frequency 3ω/8). This third harmonic dominates in the spectrum, and can be
regarded as the principal one, while the fundamental harmonic can be regarded
as its third subharmonic. Considerable contributions to the spectrum are given
also by the 5th and 11th harmonics of the fundamental frequency. Approximate
boundary conditions for small-amplitude stationary oscillations of this type (n/3-order
subresonance) can be found analytically from the linearized differential equation by
a method similar to that used above for n-order subresonance: we can try as ϕ(t)
a solution consisting of spectral components with frequencies 3ω/n, (n − 3)ω/n, and
(n + 3)ω/n:

ϕ(t) = A3 sin(3ωt/n) + An−3 sin[(n− 3)ωt/n] + An+3 sin[(n + 3)ωt/n]. (22)

Substituting this trial function ϕ(t) into equation (9) (with γ = 0) and expanding
the products of trigonometric functions, we obtain a system of equations for the
coefficients A3, An−3 and An+3. Condition of existence of a non-trivial solution to
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the system yields the following expression for the minimal driving amplitude:

mmin =
3
√

2(n2 − 32)
n2
√

n2 + 32
. (23)

(Compare equation (23) with a similar expression, equation (13), for the critical
driving amplitude of the integer-order subharmonic resonances.) The analytical results
of calculations for n ≥ 8 agree well with the simulations, especially if one more high
harmonic is included in the trial function ϕ(t). If the driving amplitude exceeds the
critical value, the angular excursion of the pendulum at these modes increases, and
additional harmonics appear in its spectrum.

8. Concluding remarks

The parametrically excited pendulum is richer in various modes of possible behaviour
than we can expect for such a simple physical system relying on our intuition. Its
nonlinear large-amplitude motions can hardly be called “simple.” In this paper we
have touched only a small part of existing motions. We have suggested a clear physical
explanation of subharmonic resonances and developed an approximate quantitative
theory of these modes. The spectral composition of subharmonic resonances is
investigated quantitatively, and their low-amplitude boundaries in the parameter
space are determined. Also several related modes of regular behaviour (subharmonic
resonances of fractional orders) are described and explained for the first time.

The simulations show that variations of the parameter set (dimensionless driving
amplitude a/l, normalized driving frequency ω/ω0, and quality factor Q) result
in numerous different regular and chaotic types of behaviour. The pendulum’s
dynamics exhibits a great variety of other asymptotic rotational, oscillatory, and
combined (both rotational and oscillatory) multiple-periodic stationary states as well
as chaotic attractors, whose basins of attraction are characterized by a surprisingly
complex (fractal) structure. Computer simulations reveal also intricate sequences of
bifurcations, leading to numerous complicated chaotic regimes. All these motions
remained beyond the scope of this paper. With good reason we can suppose that this
apparently simple physical system is inexhaustible.
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